1. O'Brart DP, Shalchi Z, Mcdonald RJ, et al. Twenty-year follow-up of a randomized prospective clinical trial of excimer laser photorefractive keratectomy. Am J Ophthalmol. 2014; 158:651–663.
2. Sandoval HP, Donnenfeld ED, Kohnen T, et al. Modern laser in situ keratomileusis outcomes. J Cataract Refract Surg. 2016; 42:1224–1234.
Article
3. Lam DS, Fan DS, Chan WM, et al. Prevalence and characteristics of peripheral retinal degeneration in Chinese adults with high myopia: a cross-sectional prevalence survey. Optom Vis Sci. 2005; 82:235–238.
Article
4. Arevalo JF. Retinal complications after laser-assisted in situ keratomileusis (LASIK). Curr Opin Ophthalmol. 2004; 15:184–191.
Article
5. Lewis H. Peripheral retinal degenerations and the risk of retinal detachment. Am J Ophthalmol. 2003; 136:155–160.
Article
6. Lin SC, Tseng SH. Prophylactic laser photocoagulation for retinal breaks before laser in situ keratomileusis. J Refract Surg. 2003; 19:661–665.
Article
7. Lin J, Xie X, Du X, et al. Incidence of vitreoretinal pathologic conditions in myopic eyes after laser in situ keratomileusis. Zhonghua Yan Ke Za Zhi. 2002; 38:546–549.
8. Wright KW, Strube YNJ. 3rd ed. New York: Oxford University Press;2012. p. 92.
9. Lee YC. Active eye-tracking improves LASIK results. J Refract Surg. 2007; 23:581–585.
Article
10. Mosquera SA, Arbelaez MC. Use of a six-dimensional eye-tracker in corneal laser refractive surgery with the Schwind Amaris Maris TotalTech laser. J Refract Surg. 2011; 27:582–590.
11. Meidani A, Tzavara C. Comparison of efficacy, safety, and predictability of laser in situ keratomileusis using two laser suites. Clin Ophthalmol. 2016; 10:1639–1646.
12. Waring GO 3rd. One-kilohertz eye tracker and active intraoperative torsion detection in the NIDEK CXIII and Quest excimer lasers. J Refract Surg. 2009; 25:10 Suppl. S931–S933.
Article
13. Pajic B, Cvejic Z, Mijatovic Z, et al. Excimer laser surgery: biometrical iris eye recognition with cyclorotational control eye tracker system. Sensors (Basel). 2017; 17:pii: E1211.
Article
14. Ciccio AE, Durrie DS, Stahl JE, Schwendeman F. Ocular cyclotorsion during customized laser ablation. J Refract Surg. 2005; 21:S772–S774.
Article
15. Chang J. Cyclotorsion during laser in situ keratomileusis. J Cataract Refract Surg. 2008; 34:1720–1726.
Article
16. Reinstein DZ, Gobbe M, Gobbe L, et al. Optical zone centration accuracy using corneal fixation-based SMILE compared to eye tracker-based femtosecond laser-assisted LASIK for myopia. J Refract Surg. 2015; 31:586–592.
Article
17. Piñero DP, Teus MA. Clinical outcomes of small-incision lenticule extraction and femtosecond laser-assisted wavefront-guided laser-in situ keratomileusis. J Cataract Refract Surg. 2016; 42:1078–1093.
18. Chan C, Lawless M, Sutton G, et al. Small incision lenticule extraction (SMILE) in 2015. Clin Exp Optom. 2016; 99:204–212.
Article
19. Nagiel A, Lalane RA, Sadda SR, Schwartz SD. Ultra-widefield fundus imaging: A review of clinical applications and future trends. Retina. 2016; 36:660–678.
20. Wilkes SR, Beard CN, Kurland LT, et al. The incidence of retinal detachment in Rochester, Minnesota, 1970-1978. Am J Ophthalmol. 1982; 94:670–673.
Article
21. Ghosh S, Couper TA, Lamoureux E, et al. Evaluation of iris recognition system for wavefront-guided laser in situ keratomileusis for myopic astigmatism. J Cataract Refract Surg. 2008; 34:215–221.
Article
22. Motwani M. The use of WaveLight(R) Contoura to create a uniform cornea: the LYRA Protocol. Part 2: the consequences of treating astigmatism on an incorrect axis via excimer laser. Clin Ophthalmol. 2017; 11:907–913.
23. Kanellopoulos AJ. Topography-modified refraction (TMR): adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK. Clin Ophthalmol. 2016; 10:2213–2221.
Article
24. Utine CA, Altunsoy M, Basar D. Visante anterior segment OCT in a patient with ga sbubbles in the anterior chamber after femtosecond laser corneal flap formation. Int Ophthalmol. 2010; 30:81–84.
25. Gimeno FL, Chan CM, Li L, et al. Comparison of eye-tracking success in laser in situ keratomileusis after flap creation with 2 femtosecond laser models. J Cataract Refract Surg. 2011; 37:538–543.
Article
26. de Ortueta D, Arba-Mosquera S. Laser in situ keratomileusis for high hyperopia with corneal vertex centration and asymmetric offset. Eur J Ophthalmol. 2017; 27:141–152.
Article
27. Narváez J, Brucks M, Zimmerman G, et al. Intraoperative cyclorotation and pupil centroid shift during LASIK and PRK. J Refract Surg. 2012; 28:353–357.
Article
28. Motwani M, Pei R. Treatment of moderate-to-high hyperopia with the WaveLight Allegretto 400 and EX500 excimer laser systems. Clin Ophthalmol. 2017; 11:999–1007.
Article
29. Kanellopoulos AJ, Asimellis G. LASIK ablation centration: an objective digitized assessment and comparison between two generations of an excimer laser. J Refract Surg. 2015; 31:164–169.
Article
30. Kim WK, Cho EY, Kim HS, Kim JK. The incidence of increased intraocular pressure when using 01% fluorometholone after photorefractive keratectomy. J Korean Ophthalmol Soc. 2015; 56:985–991.
Article
31. Chen X, Stojanovic A, Stojanovic F, et al. Effect of limbal marking prior to laser ablation on the magnitude of cyclotorsional error. J Refract Surg. 2012; 28:358–362.
Article
32. Shajari M, Bühren J, Kohnen T. Dynamic torsional misalignment of eyes during laser in-situ keratomileusis. Graefes Arch Clin Exp Ophthalmol. 2016; 254:911–916.
Article
33. Febbraro JL, Koch DD, Khan HN, et al. Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis. J Cataract Refract Surg. 2010; 36:1718–1723.
Article