1. Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine (Phila Pa 1976). 2012; 37(1):67–76.
2. Jancuska JM, Hutzler L, Protopsaltis TS, Bendo JA, Bosco J. Utilization of lumbar spinal fusion in New York State: trends and disparities. Spine (Phila Pa 1976). 2016; 41(19):1508–1514.
3. Rimler SB, Gale BD, Reede DL. Diagnosis-related groups and hospital inpatient federal reimbursement. Radiographics. 2015; 35(6):1825–1834.
Article
4. Hsiao WC, Sapolsky HM, Dunn DL, Weiner SL. Lessons of the New Jersey DRG payment system. Health Aff (Millwood). 1986; 5(2):32–45.
Article
5. Ugiliweneza B, Kong M, Nosova K, Huang KT, Babu R, Lad SP, et al. Spinal surgery: variations in health care costs and implications for episode-based bundled payments. Spine (Phila Pa 1976). 2014; 39(15):1235–1242.
6. Wright DJ, Mukamel DB, Greenfield S, Bederman SS. Cost variation within spinal fusion payment groups. Spine (Phila Pa 1976). 2016; 41(22):1747–1753.
Article
7. National Health Research Institutes. Background of National Health Insurance Research Database in Taiwan [Internet]. Miaoli County, Taiwan: National Health Research Institutes;c2016. cited at 2018 Jan 10. Available from:
http://nhird.nhri.org.tw/en/index.html.
9. Tomar D, Agarwal S. A survey on data mining approaches for healthcare. Int J Biosci Biotechnol. 2013; 5(5):241–266.
Article
10. Moon M, Lee SK. Applying of decision tree analysis to risk factors associated with pressure ulcers in long-term care facilities. Healthc Inform Res. 2017; 23(1):43–52.
Article
11. Yahya N, Ebert MA, Bulsara M, House MJ, Kennedy A, Joseph DJ, et al. Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: a comparison of conventional and machine-learning methods. Med Phys. 2016; 43(5):2040–2052.
Article
12. Walid MS, Robinson JS Jr. Economic impact of comorbidities in spine surgery. J Neurosurg Spine. 2011; 14(3):318–321.
Article
13. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002; 16:321–357.
Article
14. Han J, Kamber M, Pei J. Data mining: concepts and techniques. 3rd ed. Amsterdam: Elsevier;2011.
15. Miranda E, Irwansyah E, Amelga AY, Maribondang MM, Salim M. Detection of cardiovascular disease risk's level for adults using naive Bayes classifier. Healthc Inform Res. 2016; 22(3):196–205.
Article
16. à Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995; 20(3):273–297.
Article
17. Kuo PJ, Wu SC, Chien PC, Rau CS, Chen YC, Hsieh HY, et al. Derivation and validation of different machine-learning models in mortality prediction of trauma in motorcycle riders: a cross-sectional retrospective study in southern Taiwan. BMJ Open. 2018; 8(1):e018252.
Article
18. Quinlan JR. Induction of decision trees. Mach Learn. 1986; 1(1):81–106.
Article
19. Archana S, Elangovan K. Survey of classification techniques in data mining. Int J Comput Sci Mob Appl. 2014; 2(2):65–71.
20. Sanz J, Paternain D, Galar M, Fernandez J, Reyero D, Belzunegui T. A new survival status prediction system for severe trauma patients based on a multiple classifier system. Comput Methods Programs Biomed. 2017; 142:1–8.
Article
21. Habibi S, Ahmadi M, Alizadeh S. Type 2 diabetes mellitus screening and risk factors using decision tree: results of data mining. Glob J Health Sci. 2015; 7(5):304–310.
Article
22. Breiman L. Random forests. Mach Learn. 2001; 45(1):5–32.
23. Raju D, Su X, Patrician PA, Loan LA, McCarthy MS. Exploring factors associated with pressure ulcers: a data mining approach. Int J Nurs Stud. 2015; 52(1):102–111.
Article
24. Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform. 2008; 77(2):81–97.
Article
25. Bradywood A, Farrokhi F, Williams B, Kowalczyk M, Blackmore CC. Reduction of inpatient hospital length of stay in lumbar fusion patients with implementation of an evidence-based clinical care pathway. Spine (Phila Pa 1976). 2017; 42(3):169–176.
Article
26. Kulkarni VY, Sinha PK. Random forest classifiers: a survey and future research directions. Int J Adv Comput. 2013; 36(1):1144–1153.
27. Hu H, Li J, Plank A, Wang H, Daggard G. A comparative study of classification methods for microarray data analysis. In : Proceedings of the 5th Australasian Conference on Data Mining and Analystics; 2006 Nov 29; Sydney, Australia. p. 33–37.
28. Masetic Z, Subasi A. Congestive heart failure detection using random forest classifier. Comput Methods Programs Biomed. 2016; 130:54–64.
Article
29. Allyn J, Allou N, Augustin P, Philip I, Martinet O, Belghiti M, et al. A comparison of a machine learning model with EuroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis. PLoS One. 2017; 12(1):e0169772.
Article