1.Keall PJ., Mageras GS., Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med. Phys. 2006. 33(10):3874–900.
2.Chung H., Cho S., Cho B. Feasibility Study of Robotics-based Patient Immobilization Device for Real-time Motion Compensation. Prog Med Phys. 2016. 27(3):117–24.
Article
3.Depuydt T., Verellen D., Haas O, et al. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system. Radiother Oncol. 2011. 98(3):365–72.
Article
4.Engelsman M., Sharp GC., Bortfeld T, et al. How much margin reduction is possible through gating or breath hold? Phys. Med. Biol. 2005. 50(3):477–90.
5.Stevens CW., Munden RF., Forster KM, et al. Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int. J. Radiation Oncology Biol. Phys. 2001. 51(1):62–8.
6.Sharp GC., Jiang SB., Shimizu S., Shirato H. Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Phys. Med. Biol. 2004. 49(3):425–40.
Article
7.Murphy MJ. Tracking moving organs in real time. Semin Radiat Oncol. 2004. 14(1):91–100.
Article
8.Putra D., Haas OCL., Mills JA., Burnham KJ. A multiple model approach to respiratory motion prediction for realtime IGRT. Phys. Med. Biol. 2008. 53(6):1651–63.
Article
9.Murphy MJ., Pokhrel D. Optimization of an adaptive neural network to predict breathing. Med. Phys. 2009. 36(1):40–7.
Article
10.Kalet A., Sandison G., Wu H., Schmitz R. A state-based probabilistic model for tumor respiratory motion prediction. Phys. Med. Biol. 2010. 55(24):7615–31.
Article
11.Ren Q., Nishioka S., Shirato H., Berbeco RI. Adaptive prediction of respiratory motion for motion compensation radiotherapy. Phys. Med. Biol. 2007. 52(22):6651–61.
Article
12.Ernst F., Schweikard A. Predicting respiratory motion signals for image-guided radiotherapy using multi-step linear methods (MULIN). Int J Comput Assist Radiol Surg. 2008. 3(1):85–90.
Article
13.Ernst F., Schlaefer A., Schweikard A. Prediction of Respiratory Motion with Wavelet-Based Multiscale Autoregression. Proc. of the 10th int. conf. on Medical image computing and computer-assisted intervention, MICCAI (Berlin, Germany). 2007. 668–75.
14.Chiesa S., Placidi L., Azario L, et al. Adaptive optimization by 6 DOF robotic couch in prostate volumetric IMRT treatment: rototranslational shift and dosimetric consequences. J Appl Clin Med Phys. 2015. 16(5):35–45.
Article
15.D'Souza WD., Naqvi SA., Yu CX. Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study. Phys. Med. Biol. 2005. 50:4021–33.
16.Kilby W., Dooley JR., Kuduvalli G, et al. The CyberKnife Robotic Radiosurgery System in 2010. Technol. Cancer Res. Treat. 2010. 9(5):433–52.
17.Diebel J. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors. Matrix. 2006. 58:1–35.
18.Krilavicius T., Zliobaite I., Simonavicius H., Jarusevicius L. Predicting respiratory motion for real-time tumour tracking in radiotherapy. 2016 IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS), (Dublin, Ireland). 2016. 1–33.
Article