Korean J Crit Care Med.  2017 Aug;32(3):256-264. 10.4266/kjccm.2017.00136.

Utility of Volume Assessment Using Bioelectrical Impedance Analysis in Critically Ill Patients Receiving Continuous Renal Replacement Therapy: A Prospective Observational Study

Affiliations
  • 1Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Korea. sh76so@cau.ac.kr

Abstract

BACKGROUND
Fluid overload prior to continuous renal replacement therapy (CRRT) is an important prognostic factor. Thus, precise evaluation of fluid status is necessary to treat such patients. In this study, we investigated whether fluid assessment using bioelectrical impedance analysis (BIA) can predict outcomes in critically ill patients requiring CRRT.
METHODS
A prospective observational study was performed in patients who were admitted to the intensive care unit and who required CRRT. BIA was conducted before CRRT; then, the ratio of extracellular water to total body water (ECW/TBW) was derived to estimate volume status.
RESULTS
A total of 31 patients treated with CRRT were included. There were 18 men (58.1%), and the median age was 67 years (interquartile range, 51 to 78 years). Fourteen patients (45.2%) died within 28 days after CRRT initiation. Patients were divided into 16 with ECW/TBW ≥0.41 and 15 with ECW/TBW <0.41. Survival rate within 28 days was different between the two groups (P = 0.044). Cox regression analysis revealed a relationship between ECW/TBW ≥0.41 and 28-day mortality, but it was not statistically significant (hazard ratio, 3.0; 95% confidence interval, 0.9 to 9.8; P = 0.061). Lastly, the area under the curve of ECW/TBW for 28-day mortality was analyzed. The area under the curve of ECW/TBW was 0.73 (95% confidence interval, 0.54 to 0.92), and this was significant (P = 0.037).
CONCLUSIONS
Fluid status can be assessed using BIA in critically ill patients requiring CRRT, and BIA can predict mortality. Further large trials are needed to confirm the usefulness of BIA in critically ill patients.

Keyword

critical illness; electric impedance; mortality; renal replacement therapy

MeSH Terms

Body Water
Critical Illness*
Electric Impedance*
Humans
Intensive Care Units
Male
Mortality
Observational Study*
Prospective Studies*
Renal Replacement Therapy*
Survival Rate
Water
Water

Figure

  • Figure 1. Survival rate according to volume status in critically ill patients who received continuous renal replacement therapy. Survival rate was compared between the two groups. As shown, patients with ECW/TBW ≥0.41 had a lower survival rate than those with ECW/ TBW <0.41 (P = 0.044). Survival rate after 28 days was 73.3% in less hydrated patients and 36.0% in more hydrated patients. ECW/ TBW: the ratio of extracellular water to total body water.

  • Figure 2. Receiver operating characteristics curve of volume status estimated by bioelectrical impedance analysis. ECW/TBW appeared to have the potential to predict mortality (P = 0.037). The area under the curve of ECW/TBW for 28-day mortality was 0.73 (95% confidence interval, 0.54 to 0.92) in this study. ECW/ TBW: the ratio of extracellular water to total body water.


Reference

References

1. Hoste EA, Schurgers M. Epidemiology of acute kidney injury: how big is the problem? Crit Care Med. 2008; 36(4 Suppl):S146–51.
Article
2. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Moreira S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005; 294:813–8.
3. Liu KD, Himmelfarb J, Paganini E, Ikizler TA, Soroko SH, Mehta RL, et al. Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol. 2006; 1:915–9.
Article
4. Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E, et al. Initiation strategies for renalreplacement therapy in the intensive care unit. N Engl J Med. 2016; 375:122–33.
Article
5. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009; 76:422–7.
Article
6. RENAL Replacement Therapy Study Investigators, Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, et al. An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. augmented level of replacement therapy trial. Crit Care Med. 2012; 40:1753–60.
7. Han MJ, Park KH, Shin JH, Kim SH. Influence of daily fluid balance prior to continuous renal replacement therapy on outcomes in critically ill patients. J Korean Med Sci. 2016; 31:1337–44.
Article
8. Dou Y, Zhu F, Kotanko P. Assessment of extracellular fluid volume and fluid status in hemodialysis patients: current status and technical advances. Semin Dial. 2012; 25:377–87.
Article
9. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013; 41:1774–81.
Article
10. Arjamaa O. Physiology of natriuretic peptides: the volume overload hypothesis revisited. World J Cardiol. 2014; 6:4–7.
Article
11. Levitt JE, Vinayak AG, Gehlbach BK, Pohlman A, Van Cleve W, Hall JB, et al. Diagnostic utility of Btype natriuretic peptide in critically ill patients with pulmonary edema: a prospective cohort study. Crit Care. 2008; 12:R3.
Article
12. Maeder MT, Rickenbacher P, Rickli H, Abbühl H, Gutmann M, Erne P, et al. N-terminal pro brain natriuretic peptide-guided management in patients with heart failure and preserved ejection fraction: findings from the trial of intensified versus standard medical therapy in elderly patients with congestive heart failure (TIME-CHF). Eur J Heart Fail. 2013; 15:1148–56.
Article
13. Papanikolaou J, Makris D, Mpaka M, Palli E, Zygoulis P, Zakynthinos E. New insights into the mechanisms involved in B-type natriuretic peptide elevation and its prognostic value in septic patients. Crit Care. 2014; 18:R94.
Article
14. Chamney PW, Krämer M, Rode C, Kleinekofort W, Wizemann V. A new technique for establishing dry weight in hemodialysis patients via whole body bioimpedance. Kidney Int. 2002; 61:2250–8.
Article
15. Wabel P, Chamney P, Moissl U, Jirka T. Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif. 2009; 27:75–80.
Article
16. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr. 2004; 23:1430–53.
Article
17. Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study: working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med. 1998; 26:1793–800.
18. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008; 12:R74.
Article
19. Glassford NJ, Bellomo R. The complexities of intravenous fluid research: questions of scale, volume, and accumulation. Korean J Crit Care Med. 2016; 31:276–99.
Article
20. Chan C, McIntyre C, Smith D, Spanel P, Davies SJ. Combining near-subject absolute and relative measures of longitudinal hydration in hemodialysis. Clin J Am Soc Nephrol. 2009; 4:1791–8.
Article
21. Roos AN, Westendorp RG, Frölich M, Meinders AE. Weight changes in critically ill patients evaluated by fluid balances and impedance measurements. Crit Care Med. 1993; 21:871–7.
Article
22. Perren A, Markmann M, Merlani G, Marone C, Merlani P. Fluid balance in critically ill patients. Should we really rely on it? Minerva Anestesiol. 2011; 77:802–11.
23. Piccoli A. Identification of operational clues to dry weight prescription in hemodialysis using bioimpedance vector analysis. The Italian Hemodialysis-Bioelectrical Impedance Analysis (HD-BIA) study group. Kidney Int. 1998; 53:1036–43.
24. Nescolarde L, Piccoli A, Román A, Núñez A, Morales R, Tamayo J, et al. Bioelectrical impedance vector analysis in haemodialysis patients: relation between oedema and mortality. Physiol Meas. 2004; 25:1271–80.
Article
25. Shin JH, Kim CR, Hong M, Kim SH, Yu SH. Influences of dry weight adjustment based on bioimpedance analysis on ambulatory blood pressure in hemodialysis patients. J Korean Soc Hypertens. 2012; 18:166–75.
Article
26. Roos AN, Westendorp RG, Brand R, Souverijn JH, Frölich M, Meinders AE. Predictive value of tetrapolar body impedance measurements for hydration status in critically ill patients. Intensive Care Med. 1995; 21:125–31.
Article
27. Foley K, Keegan M, Campbell I, Murby B, Hancox D, Pollard B. Use of single-frequency bioimpedance at 50 kHz to estimate total body water in patients with multiple organ failure and fluid overload. Crit Care Med. 1999; 27:1472–7.
Article
28. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985; 41:810–7.
Article
29. Matthie JR. Bioimpedance measurements of human body composition: critical analysis and outlook. Expert Rev Med Devices. 2008; 5:239–61.
Article
30. Lopot F, Nejedlý B, Novotná H, Macková M, Sulková S. Age-related extracellular to total body water volume ratio (Ecv/TBW): can it be used for “dry weight” determination in dialysis patients? Application of multifrequency bioimpedance measurement. Int J Artif Organs. 2002; 25:762–9.
31. Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA. 2001; 286:1754–8.
Article
32. Jansen TC, van Bommel J, Woodward R, Mulder PG, Bakker J. Association between blood lactate levels, Sequential Organ Failure Assessment subscores, and 28-day mortality during early and late intensive care unit stay: a retrospective observational study. Crit Care Med. 2009; 37:2369–74.
Article
33. Jones SL, Tanaka A, Eastwood GM, Young H, Peck L, Bellomo R, et al. Bioelectrical impedance vector analysis in critically ill patients: a prospective, clinician- blinded investigation. Crit Care. 2015; 19:290.
Article
34. Chen H, Wu B, Gong D, Liu Z. Fluid overload at start of continuous renal replacement therapy is associated with poorer clinical condition and outcome: a prospective observational study on the combined use of bioimpedance vector analysis and serum Nterminal pro-B-type natriuretic peptide measurement. Crit Care. 2015; 19:135.
Article
35. Samoni S, Vigo V, Reséndiz LI, Villa G, De Rosa S, Nalesso F, et al. Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit Care. 2016; 20:95.
Article
Full Text Links
  • KJCCM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr