1. Jin GJ, Crandall AS, Jones JJ. Intraocular lens exchange due to in-correct lens power. Ophthalmology. 2007; 114:417–24.
Article
2. Kora Y, Shimizu K, Yoshida M. . Intraocular lens power calcu-lation for lens exchange. J Cataract Refract Surg. 2001; 27:543–8.
Article
3. Eom Y, Song JS, Kim HM. Spectacle plane add power of multi-focal intraocular lenses according to effective lens position. Can J Ophthalmol. 2017; 52:54–60.
Article
4. Eom Y, Song JS, Kim HM. Modified Haigis formula effective lens position equation for ciliary sulcus-implanted intraocular lenses. Am J Ophthalmol. 2016; 161:142–9.e1-2..
Article
5. Eom Y, Song JS, Kim YY, Kim HM. Comparison of SRK/T and Haigis formulas for predicting corneal astigmatism correction with toric intraocular lenses. J Cataract Refract Surg. 2015; 41:1650–7.
Article
6. Eom Y, Kang SY, Song JS. . Effect of effective lens position on cylinder power of toric intraocular lenses. Can J Ophthalmol. 2015; 50:26–32.
Article
7. Olsen T. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 1992; 18:125–9.
Article
8. Findl O, Drexler W, Menapace R. . Improved prediction of in-traocular lens power using partial coherence interferometry. J Cataract Refract Surg. 2001; 27:861–7.
Article
9. Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988; 13:186–8.
Article
10. Haigis W, Lege B, Miller N, Schneider B. Comparison of im-mersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol. 2000; 238:765–73.
Article
11. Connors R 3rd, Boseman P 3rd, Olson RJ. Accuracy and reproduci-bility of biometry using partial coherence interferometry. J Cataract Refract Surg. 2002; 28:235–8.
Article
12. Goyal R, North RV, Morgan JE. Comparison of laser inter-ferometry and ultrasound A-scan in the measurement of axial length. Acta Ophthalmol Scand. 2003; 81:331–5.
Article
13. Olsen T. Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster. Acta Ophthalmol Scand. 2007; 85:84–7.
Article
14. Vogel A, Dick HB, Krummenauer F. Reproducibility of optical biometry using partial coherence interferometry: intraobserver and interobserver reliability. J Cataract Refract Surg. 2001; 27:1961–8.
Article
15. Hitzenberger CK, Drexler W, Dolezal C. . Measurement of the axial length of cataract eyes by laser Doppler interferometry. Invest Ophthalmol Vis Sci. 1993; 34:1886–93.
16. Tehrani M, Krummenauer F, Blom E, Dick HB. Evaluation of the practicality of optical biometry and applanation ultrasound in 253 eyes. J Cataract Refract Surg. 2003; 29:741–6.
Article
17. Freeman G, Pesudovs K. The impact of cataract severity on meas-urement acquisition with the IOLMaster. Acta Ophthalmol Scand. 2005; 83:439–42.
Article
18. Hirnschall N, Murphy S, Pimenides D. . Assessment of a new averaging algorithm to increase the sensitivity of axial eye length measurement with optical biometry in eyes with dense cataract. J Cataract Refract Surg. 2011; 37:45–9.
Article
19. Osher RH, Yu BC, Koch DD. Posterior polar cataracts: a predis-position to intraoperative posterior capsular rupture. J Cataract Refract Surg. 1990; 16:157–62.
Article
20. Brazitikos PD, Tsinopoulos IT, Papadopoulos NT. . Ultrasonographic classification and phacoemulsification of white senile cataracts. Ophthalmology. 1999; 106:2178–83.
Article
21. Vasavada A, Singh R. Phacoemulsification in eyeswith posterior polar cataract. J Cataract Refract Surg. 1999; 25:238–45.
Article
22. Chakrabarti A, Singh S. Phacoemulsification in eyes with white cataract. J Cataract Refract Surg. 2000; 26:1041–7.
Article
23. Singh R, Vasavada AR, Janaswamy G. Phacoemulsification of bru-nescent and black cataracts. J Cataract Refract Surg. 2001; 27:1762–9.
Article
24. Artzén D, Lundström M, Behndig A. . Capsule complication during cataract surgery: case-control study of preoperative and in-traoperative risk factors: Swedish Capsule Rupture Study Group report 2. J Cataract Refract Surg. 2009; 35:1688–93.
25. Langwiń ska-Woś ko E, Szulborski K, Broniek-Kowalik K. The complications during phacoemulsification in patients with posteri-or polar cataract. Klin Oczna. 2011; 113:16–8.
26. Dick HB, Kohnen T, Jacobi FK, Jacobi KW. Long-term endothelial cell loss following phacoemulsification through a temporal clear corneal incision. J Cataract Refract Surg. 1996; 22:63–71.
Article
27. Hayashi K, Hayashi H, Nakao F, Hayashi F. Risk factors for cor-neal endothelial injury during phacoemulsification. J Cataract Refract Surg. 1996; 22:1079–84.
Article
28. Lundberg B, Jonsson M, Behndig A. Postoperative corneal swel-ling correlates strongly to corneal endothelial cell loss after pha-coemulsification cataract surgery. Am J Ophthalmol. 2005; 139:1035–41.
Article
29. Mencucci R, Ambrosini S, Ponchietti C. . Ultrasound thermal damage to rabbit corneas after simulated phacoemulsification. J Cataract Refract Surg. 2005; 31:2180–6.
Article
30. Mencucci R, Ponchietti C, Virgili G. . Corneal endothelial damage after cataract surgery: Microincision versus standard technique. J Cataract Refract Surg. 2006; 32:1351–4.
Article
31. Díez-Ajenjo MA, García-Domene MC, Artigas JM. . Lens opacities in Valencia, Spain. Eur J Ophthalmol. 2011; 21:715–22.
Article
32. Praveen MR, Shah GD, Vasavada AR. . A study to explore the risk factors for the early onset of cataract in India. Eye (Lond). 2010; 24:686–94.
Article
33. Xu L, Cui T, Zhang S. . Prevalence and risk factors of lens opacities in urban and rural Chinese in Beijing. Ophthalmology. 2006; 113:747–55.
Article