1.Butler JM. Advanced topics in forensic DNA typing: methodology. San Diego, CA: Academic Press;2011.
2.Enoch MA., Shen PH., Xu K, et al. Using ancestry-informative markers to define populations and detect population stratification. J Psychopharmacol. 2006. 20:(4 Suppl):. 19–26.
Article
3.Li JZ., Absher DM., Tang H, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science. 2008. 319:1100–4.
Article
4.Rosenberg NA., Pritchard JK., Weber JL, et al. Genetic structure of human populations. Science. 2002. 298:2381–5.
Article
5.Pritchard JK., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000. 155:945–59.
Article
6.Quinlan JR. Induction of decision trees. Mach Learn. 1986. 1:81–106.
Article
7.Opitz D., Maclin R. Popular ensemble methods: an empirical study. J Artif Intell Res. 1999. 11:169–98.
Article
8.Rokach L. Ensemble-based classifiers. Artif Intell Rev. 2010. 33:1–39.
Article
9.Quinlan JR. Bagging, boosting, and C4.5. AAAI/IAAI '96 Proceedings of the Thirteenth National Conference on Artificial Intelligence. 1996 Aug 4-8; Portland, OR, USA. Vol. 1. Palo Alto, CA: AAAI Press;. 1996. 725–30.
10.Breiman L. Bagging predictors. Mach Learn. 1996. 24:123–40.
Article
11.Schapire RE. The strength of weak learnability. Mach Learn. 1990. 5:197–227.
Article
12.Freund Y., Schapire RE. A short introduction to boosting. J Jpn Soc Artif Intell. 1999. 14:771–80.
13.Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal. 2002. 38:367–78.
Article
14.Wang R., Lee N., Wei Y. A case study: improve classification of rare events with SAS Enterprise Miner. In: Proceedings of the SAS Global Forum 2015 Conference. Cary, NC: SAS Institute Inc.;2015.
15.Rahman MM., Davis DN. Addressing the class imbalance problem in medical datasets. Int J Mach Learn Comput. 2013. 3:224–8.
Article
16.Purps J., Siegert S., Willuweit S, et al. A global analysis of Y-chromosomal haplotype diversity for 23 STR loci. Forensic Sci Int Genet. 2014. 12:12–23.