J Adv Prosthodont.  2016 Jun;8(3):181-186. 10.4047/jap.2016.8.3.181.

Evaluation of translucency of monolithic zirconia and framework zirconia materials

Affiliations
  • 1Department of Prosthodontics, Faculty of Dentistry, Bezmialem Vakif University, Ä°stanbul, Turkey. isilbayramgurler@yahoo.com

Abstract

PURPOSE
The opacity of zirconia is an esthetic disadvantage that hinders achieving natural and shade-matched restorations. The aim of this study was to evaluate the translucency of non-colored and colored framework zirconia and monolithic zirconia.
MATERIALS AND METHODS
The three groups tested were: non-colored framework zirconia, colored framework zirconia with the A3 shade according to Vita Classic Scale, and monolithic zirconia (n=5). The specimens were fabricated in the dimensions of 15×12×0.5 mm. A spectrophotometer was used to measure the contrast ratio, which is indicative of translucency. Three measurements were made to obtain the contrast ratios of the materials over a white background (L*w) and a black background (L*b). The data were analyzed using the one-way analysis of variance and Tukey HSD tests. One specimen from each group was chosen for scanning electron microscope analysis. The determined areas of the SEM images were divided by the number of grains in order to calculate the mean grain size.
RESULTS
Statistically significant differences were observed among all groups (P<.05). Non-colored zirconia had the highest translucency with a contrast ratio of 0.75, while monolithic zirconia had the lowest translucency with a contrast ratio of 0.8. The mean grain sizes of the non-colored, colored, and monolithic zirconia were 233, 256, and 361 nm, respectively.
CONCLUSION
The translucency of the zirconia was affected by the coloring procedure and the grain size. Although monolithic zirconia may not be the best esthetic material for the anterior region, it may serve as an alternative in the posterior region for the bilayered zirconia restorations.

Keyword

Translucency; Contrast ratio; Colored zirconia; Monolithic zirconia; Grain size

MeSH Terms

Cereals

Figure

  • Fig. 1 The SEM images of the groups (× 20,000). The differences in the grain sizes can be observed. (A) Group Z, (B) Group CZ, (C) Group MZ.

  • Fig. 2 The grain sizes of the Z, CZ and MZ groups (nm).


Reference

1. Joiner A. Tooth colour: a review of the literature. J Dent. 2004; 32:3–12. PMID: 14738829.
Article
2. Dietschi D. Layering concepts in anterior composite restorations. J Adhes Dent. 2001; 3:71–80. PMID: 11317387.
3. Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent. 1996; 75:18–32. PMID: 9005250.
Article
4. Spear F, Holloway J. Which all-ceramic system is optimal for anterior esthetics? J Am Dent Assoc. 2008; 139:19S–24S. PMID: 18768905.
Article
5. Raptis NV, Michalakis KX, Hirayama H. Optical behavior of current ceramic systems. Int J Periodontics Restorative Dent. 2006; 26:31–41. PMID: 16515094.
6. Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics. 2nd ed. New York: John Wiley and Sons;1976. p. 646–689.
7. Pecho OE, Ghinea R, Ionescu AM, Cardona JC, Della Bona A, Pérez Mdel M. Optical behavior of dental zirconia and dentin analyzed by Kubelka-Munk theory. Dent Mater. 2015; 31:60–67. PMID: 25499249.
Article
8. Brodbelt RH, O'Brien WJ, Fan PL. Translucency of dental porcelains. J Dent Res. 1980; 59:70–75. PMID: 6927988.
Article
9. Clarke FJ. Measurement of color of human teeth. In : McLean JW, editor. Proceedings of the first international symposium on ceramics. Chicago: Quintessence;1983. p. 441–490.
10. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent. 2002; 88:4–9. PMID: 12239472.
Article
11. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent. 2009; 4:130–151. PMID: 19655651.
12. Fernandez-Oliveras A, Pecho OE, Rubiño M, Pérez MM. Measurements of scattering anisotropy in dental tissue and zirconia ceramic. Proc SPIE. 2012; 8427:48.
13. Harianawala HH, Kheur MG, Apte SK, Kale BB, Sethi TS, Kheur SM. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J Adv Prosthodont. 2014; 6:456–461. PMID: 25551005.
Article
14. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Effect of zirconia type on its bond strength with different veneer ceramics. J Prosthodont. 2008; 17:401–408. PMID: 18355163.
Article
15. Hjerppe J, Närhi T, Fröberg K, Vallittu PK, Lassila LV. Effect of shading the zirconia framework on biaxial strength and surface microhardness. Acta Odontol Scand. 2008; 66:262–267. PMID: 18645687.
Article
16. Pecho OE, Ghinea R, Ionescu AM, Cardona Jde L, Paravina RD, Pérez Mdel M. Color and translucency of zirconia ceramics, human dentine and bovine dentine. J Dent. 2012; 40:e34–e40. PMID: 22960460.
Article
17. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater. 2005; 21:984–991. PMID: 16085302.
Article
18. Kim HK, Kim SH. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent Mater. 2014; 30:e229–e237. PMID: 24853434.
Article
19. Stawarczyk B, Emslander A, Roos M, Sener B, Noack F, Keul C. Zirconia ceramics, their contrast ratio and grain size depending on sintering parameters. Dent Mater J. 2014; 33:591–598. PMID: 24998170.
Article
20. Zirkonzahn web site. Accessed 27 March, 2016. Available from: http://www.zirkonzahn.com/en/prettau-zirconia/prettau-zirconia.
21. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008; 24:299–307. PMID: 17659331.
Article
22. Rhodes WH. Controlled transient solid second-phase sintering of yttria. J Am Ceram Soc. 1981; 64:13–19.
Article
23. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater. 2014; 30:e419–e424. PMID: 25262211.
Article
24. Chevalier J, Deville S, Münch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials. 2004; 25:5539–5545. PMID: 15142736.
Article
25. Ruiz L, Readey MJ. Effect of heat treatment on grain size, phase assemblage, and mechanical properties of 3 mol% Y-TZP. J Am Ceram Soc. 1996; 79:2331–2340.
Article
26. Scott HG. Phase relationships in the zirconia-yttria system. J Mater Sci. 1975; 10:1527–1535.
Article
27. Casolco SR, Xu J, Garay JE. Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors. Scr Mater. 2008; 58:516–519.
Article
28. Lee YK, Cha HS, Ahn JS. Layered color of all-ceramic core and veneer ceramics. J Prosthet Dent. 2007; 97:279–286. PMID: 17547946.
Article
29. O'Brien WJ, Johnston WM, Fanian F. Double-layer color effects in porcelain systems. J Dent Res. 1985; 64:940–943. PMID: 3858320.
30. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hämmerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig. 2013; 17:269–274.
Article
31. Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med. 2011; 22:2429–2435. PMID: 21922331.
Article
32. Tekeli S, Erdogan M. A quantitative assessment of cavities in 3 mol% yttria-stabilized tetragonal zirconia specimens containing various grain size. Ceram Int. 2002; 28:785–789.
Article
33. Peelen JGJ, Metselaar R. Light scattering by pores in polycrystalline materials: Transmission properties of alumina. J Appl Phys. 1974; 45:216–220.
Article
34. Zhang HB, Kim BN, Morita K, Yoshida H, Lim JH, Hiraga K. Optimization of high-pressure sintering of transparent zirconia with nano-sized grains. J Alloy Compd. 2010; 508:196–199.
Article
35. Kim MJ, Ahn JS, Kim JH, Kim HY, Kim WC. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. J Adv Prosthodont. 2013; 5:161–166. PMID: 23755342.
Article
36. Anselmi-Tamburini U, Woolman JN, Munir ZA. Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure Ppulsed electric current sintering. Adv Funct Mater. 2007; 17:3267–3273.
37. Hayashi K, Kobayashi O, Toyoda S, Morinaga K. Transmission optical properties of polycrystalline alumina with submicron grains. Mater Trans JIM. 1991; 32:1024–1029.
Article
38. Apetz R, van Bruggen MPB. Transparent alumina: A light-scattering model. J Am Ceram Soc. 2003; 86:480–486.
Article
39. Tuncel I, Eroglu E, Sari T, Usumez A. The effect of coloring liquids on the translucency of zirconia framework. J Adv Prosthodont. 2013; 5:448–451. PMID: 24353884.
Article
41. ICE Zirkon translucent data sheet. Accessed: 22 July 2015. Available from: http://www.zirkonzahn.com/assets/files/anleitungen-informationen-studien/INT-Data-sheet-ICE-Zirkon-Translucent.pdf.
42. Antonson SA, Anusavice KJ. Contrast ratio of veneering and core ceramics as a function of thickness. Int J Prosthodont. 2001; 14:316–320. PMID: 11508085.
43. Wang F, Takahashi H, Iwasaki N. Translucency of dental ceramics with different thicknesses. J Prosthet Dent. 2013; 110:14–20. PMID: 23849609.
Article
44. Kurtulmus-Yilmaz S, Ulusoy M. Comparison of the translucency of shaded zirconia all-ceramic systems. J Adv Prosthodont. 2014; 6:415–422. PMID: 25352964.
Article
45. Spyropoulou PE, Giroux EC, Razzoog ME, Duff RE. Translucency of shaded zirconia core material. J Prosthet Dent. 2011; 105:304–307. PMID: 21530755.
Article
46. Liu MC, Aquilino SA, Lund PS, Vargas MA, Diaz-Arnold AM, Gratton DG, Qian F. Human perception of dental porcelain translucency correlated to spectrophotometric measurements. J Prosthodont. 2010; 19:187–193. PMID: 20040028.
Article
Full Text Links
  • JAP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2022 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr