1. An HS, Simpson JM, Glover JM, Stephany J. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine (Phila Pa 1976). 20:2211–2216. 1995.
Article
2. Boden SD, Schimandle JH. Biologic enhancement of spinal fusion. Spine (Phila Pa 1976). 20(24 Suppl):113S–123S. 1995.
Article
3. Cammisa FP Jr, Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA, et al. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine (Phila Pa 1976). 29:660–666. 2004.
Article
4. Chalmers J, Gray D, Rush J. Observations on the induction of bone in soft tissues. J Bone Joint Surg Br. 57:36–45. 1975.
Article
5. Farrokhi MR, Rahmanian A, Masoudi MS. Posterolateral versus posterior interbody fusion in isthmic spondylolisthesis. J Neurotrauma. 29:1567–1573. 2012.
Article
6. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 84:454–464. 2002.
Article
7. Fogel GR, Toohey JS, Neidre A, Brantigan JW. Fusion assessment of posterior lumbar interbody fusion using radiolucent cages: X-ray films and helical computed tomography scans compared with surgical exploration of fusion. Spine J. 8:570–577. 2008.
Article
8. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 36(Suppl 3):S20–S27. 2005.
Article
9. Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev. 64:1063–1077. 2012.
Article
10. He YX, Zhang G, Pan XH, Liu Z, Zheng LZ, Chan CW, et al. Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: A drill-hole defect model. Bone. 48:1388–1400. 2011.
Article
11. Kanayama M, Cunningham BW, Weis JC, Parker LM, Kaneda K, McAfee PC. The effects of rigid spinal instrumentation and solid bony fusion on spinal kinematics: a posterolateral spinal arthrodesis model. Spine (Phila Pa 1976). 23:767–773. 1998.
Article
12. Kim DY, Lee SH, Lee HY, Lee HJ, Chang SB, Chung SK, et al. Validation of the Korean version of the oswestry disability index. Spine (Phila Pa 1976). 30:E123–E127. 2005.
Article
13. Kim DH, Lee N, Shin DA, Yi S, Kim KN, Ha Y. Matched Comparison of Fusion Rates between Hydroxyapatite Demineralized Bone Matrix and Autograft in Lumbar Interbody Fusion. J Korean Neurosurg Soc. 59:363–367. 2016.
Article
14. Kubo T, Shiga T, Hashimoto J, Yoshioka M, Honjo H, Urabe M, et al. Osteoporosis influences the late period of fracture healing in a rat model prepared by ovariectomy and low calcium diet. J Steroid Biochem Mol Biol. 68:197–202. 1999.
Article
15. Lang P, Genant HK, Chafetz N, Steiger P, Morris JM. Three-dimensional computed tomography and multiplanar reformations in the assessment of pseudarthrosis in posterior lumbar fusion patients. Spine (Phila Pa 1976). 13:69–75. 1988.
Article
16. Larsen JM, Rimoldi RL, Capen DA, Nelson RW, Nagelberg S, Thomas JC Jr. Assessment of pseudarthrosis in pedicle screw fusion: a prospective study comparing plain radiographs, flexion/extension radiographs, CT scanning, and bone scintigraphy with operative findings. J Spinal Disord. 9:117–120. 1996.
17. Lee KJ, Roper JG, Wang JC. Demineralized bone matrix and spinal arthrodesis. Spine J. 5(6 Suppl):S217–S223. 2005.
Article
18. Lind M, Bünger C. Factors stimulating bone formation. Eur Spine J. 10(Suppl 2):S102–S109. 2001.
Article
19. Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine (Phila Pa 1976). 23:159–167. 1998.
Article
20. Najeeb S, Khurshid Z, Zohaib S, Zafar MS. Bioactivity and osseointegration of PEEK are inferior to those of titanium-a systematic review. J Oral Implantol. 42:512–516. 2016.
Article
21. Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 8:457–470. 2009.
Article
22. Ponnappan RK, Serhan H, Zarda B, Patel R, Albert T, Vaccaro AR. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J. 9:263–267. 2009.
Article
23. Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials. 29:1563–1572. 2008.
Article
24. Santos ER, Goss DG, Morcom RK, Fraser RD. Radiologic assessment of interbody fusion using carbon fiber cages. Spine (Phila Pa 1976). 28:997–1001. 2003.
Article
25. Torricelli P, Fini M, Giavaresi G, Giardino R. In vitro osteoinduction of demineralized bone. Artif Cells Blood Substit Immobil Biotechnol. 26:309–315. 1998.
Article
26. Torricelli P, Fini M, Rocca M, Giavaresi G, Giardino R. Xenogenic demineralized bone matrix: osteoinduction and influence of associated skeletal defects in heterotopic bone formation in rats. Int Orthop. 23:178–181. 1999.
Article
27. Urist MR. Bone: formation by autoinduction. Science. 150:893–899. 1965.
Article
28. Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, et al. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion–a finite element study. Spine (Phila Pa 1976). 31:E992–E998. 2006.
Article
29. Young PM, Berquist TH, Bancroft LW, Peterson JJ. Complications of spinal instrumentation. Radiographics. 27:775–789. 2007.
Article