J Korean Med Sci.  2016 Jun;31(6):902-908. 10.3346/jkms.2016.31.6.902.

Role of Coronary Artery Calcium Scoring in Detection of Coronary Artery Disease according to Framingham Risk Score in Populations with Low to Intermediate Risks

Affiliations
  • 1Department of Cardiology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
  • 2Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea. sjpark@amc.seoul.kr
  • 3Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
  • 4Department of Applied Statistics, Gachon University, Seongnam, Korea.

Abstract

Current guidelines recommend that coronary artery calcium (CAC) screening should only be used for intermediate risk groups (Framingham risk score [FRS] of 10%-20%). The CAC distributions and coronary artery disease (CAD) prevalence in various FRS strata were determined. The benefit to lower risk populations of CAC score-based screening was also assessed. In total, 1,854 participants (aged 40-79 years) without history of CAD, stroke, or diabetes were enrolled. CAC scores of > 0, ≥ 100, and ≥ 300 were present in 33.8%, 8.2%, and 2.9% of the participants, respectively. The CAC scores rose significantly as the FRS grew more severe (P < 0.01). The total CAD prevalence was 6.1%. The occult CAD prevalence in the FRS ≤ 5%, 6%-10%, 11%-20%, and > 20% strata were 3.4%, 6.7%, 9.0%, and 11.6% (P < 0.001). In multivariate logistic regression analysis adjusting, not only the intermediate and high risk groups but also the low risk (FRS 6%-10%) group had significantly increased odds ratio for occult CAD compared to the very low-risk (FRS ≤ 5%) group (1.89 [95% confidence interval, CI, 1.09-3.29] in FRS 6%-10%; 2.48 [95% CI, 1.47-4.20] in FRS 11%-20%; and 3.10 [95% CI, 1.75-5.47] in FRS > 20%; P < 0.05). In conclusion, the yield of screening for significant CAC and occult CAD is low in the very low risk population but it rises in low and intermediate risk populations.

Keyword

Coronary Artery Calcium Score; Coronary Computed Tomography; Coronary Computed Tomography Angiography; Framingham Risk Score

MeSH Terms

Aged
Calcium/*analysis
Coronary Artery Disease/*diagnosis/epidemiology/pathology
Coronary Vessels/*chemistry/diagnostic imaging/metabolism
Female
Humans
Logistic Models
Male
Middle Aged
Multivariate Analysis
Prevalence
Risk Factors
Severity of Illness Index
Tomography, X-Ray Computed
Calcium

Reference

1. Tunstall-Pedoe H, Morrison C, Woodward M, Fitzpatrick B, Watt G. Sex differences in myocardial infarction and coronary deaths in the Scottish MONICA population of Glasgow 1985 to 1991. Presentation, diagnosis, treatment, and 28-day case fatality of 3991 events in men and 1551 events in women. Circulation. 1996; 93:1981–1992.
2. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998; 97:1837–1847.
3. Brindle P, Beswick A, Fahey T, Ebrahim S. Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review. Heart. 2006; 92:1752–1759.
4. Lakoski SG, Greenland P, Wong ND, Schreiner PJ, Herrington DM, Kronmal RA, Liu K, Blumenthal RS. Coronary artery calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham risk score: the multi-ethnic study of atherosclerosis (MESA). Arch Intern Med. 2007; 167:2437–2442.
5. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004; 291:210–215.
6. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008; 358:1336–1345.
7. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology. 2003; 228:826–833.
8. Hamon M, Biondi-Zoccai GG, Malagutti P, Agostoni P, Morello R, Valgimigli M, Hamon M. Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J Am Coll Cardiol. 2006; 48:1896–1910.
9. Ferket BS, Genders TS, Colkesen EB, Visser JJ, Spronk S, Steyerberg EW, Hunink MG. Systematic review of guidelines on imaging of asymptomatic coronary artery disease. J Am Coll Cardiol. 2011; 57:1591–1600.
10. Bluemke DA, Achenbach S, Budoff M, Gerber TC, Gersh B, Hillis LD, Hundley WG, Manning WJ, Printz BF, Stuber M, et al. Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American Heart Association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation. 2008; 118:586–606.
11. Chow BJ, Larose E, Bilodeau S, Ellins ML, Galiwango P, Kass M, Sheth T, Jassal DS, Kirkpatrick ID, Mancini GB, et al. The ‘what, when, where, who and how?' of cardiac computed tomography in 2009: guidelines for the clinician. Can J Cardiol. 2009; 25:135–139.
12. Hendel RC, Patel MR, Kramer CM, Poon M, Hendel RC, Carr JC, Gerstad NA, Gillam LD, Hodgson JM, Kim RJ, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006; 48:1475–1497.
13. Budoff MJ, Achenbach S, Blumenthal RS, Carr JJ, Goldin JG, Greenland P, Guerci AD, Lima JA, Rader DJ, Rubin GD, et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the american heart association committee on cardiovascular imaging and intervention, council on cardiovascular radiology and intervention, and committee on cardiac imaging, council on clinical cardiology. Circulation. 2006; 114:1761–1791.
14. Oudkerk M, Stillman AE, Halliburton SS, Kalender WA, Möhlenkamp S, McCollough CH, Vliegenthart R, Shaw LJ, Stanford W, Taylor AJ, et al. Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging. Eur Radiol. 2008; 18:2785–2807.
15. Okwuosa TM, Greenland P, Ning H, Liu K, Bild DE, Burke GL, Eng J, Lloyd-Jones DM. Distribution of coronary artery calcium scores by Framingham 10-years risk strata in the MESA (Multi-Ethnic Study of Atherosclerosis) potential implications for coronary risk assessment. J Am Coll Cardiol. 2011; 57:1838–1845.
16. Johnson KM, Dowe DA. The detection of any coronary calcium outperforms Framingham risk score as a first step in screening for coronary atherosclerosis. AJR Am J Roentgenol. 2010; 194:1235–1243.
17. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001; 285:2486–2497.
18. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990; 15:827–832.
19. Rumberger JA, Brundage BH, Rader DJ, Kondos G. Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc. 1999; 74:243–252.
20. Elias-Smale SE, Proença RV, Koller MT, Kavousi M, van Rooij FJ, Hunink MG, Steyerberg EW, Hofman A, Oudkerk M, Witteman JC. Coronary calcium score improves classification of coronary heart disease risk in the elderly: the Rotterdam study. J Am Coll Cardiol. 2010; 56:1407–1414.
21. Choi EK, Choi SI, Rivera JJ, Nasir K, Chang SA, Chun EJ, Kim HK, Choi DJ, Blumenthal RS, Chang HJ. Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol. 2008; 52:357–365.
22. Michos ED, Vasamreddy CR, Becker DM, Yanek LR, Moy TF, Fishman EK, Becker LC, Blumenthal RS. Women with a low Framingham risk score and a family history of premature coronary heart disease have a high prevalence of subclinical coronary atherosclerosis. Am Heart J. 2005; 150:1276–1281.
23. Achenbach S. Computed tomography coronary angiography. J Am Coll Cardiol. 2006; 48:1919–1928.
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr