1. Gutierrez P, Wilson MR, Johnson C. . Influence of glaucoma-tous visual field loss on health-related quality of life. Arch Ophthalmol. 1997; 115:777–84.
Article
2. Janz NK, Wren PA, Lichter PR. . Quality of life in newly diag-nosed glaucoma patients: The Collaborative Initial Glaucoma Treatment Study. Ophthalmology. 2001; 108:887–97.
3. McKean-Cowdin R, Wang Y, Wu J. . Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study. Ophthalmology. 2008; 115:941–8.e1.
4. Parrish RK 2nd, Gedde SJ, Scott IU. . Visual function and qual-ity of life among patients with glaucoma. Arch Ophthalmol. 1997; 115:1447–55.
Article
5. Friedman DS, Freeman E, Munoz B. . Glaucoma and mobility performance: the Salisbury Eye Evaluation Project. Ophthalmology. 2007; 114:2232–7.
6. Gupta N, Krishnadev N, Hamstra SJ, Yücel YH. Depth perception deficits in glaucoma suspects. Br J Ophthalmol. 2006; 90:979–81.
Article
7. Ramulu PY, West SK, Munoz B. . Glaucoma and reading speed: the Salisbury Eye Evaluation project. Arch Ophthalmol. 2009; 127:82–7.
8. McKendrick AM, Sampson GP, Walland MJ, Badcock DR. Contrast sensitivity changes due to glaucoma and normal aging: low-spatial-frequency losses in both magnocellular and parvocel-lular pathways. Invest Ophthalmol Vis Sci. 2007; 48:2115–22.
Article
9. Sung MS, Park SW. Spatial contrast sensitivity for the diagnosis of glaucoma. Journal of The Korean Glaucoma Society. 2015; 4:14–20.
Article
10. Chang JH, Chun BY, Shin JP. The stereopic acuity in patients with unilateral or bilateral visual field defects. J Korean Ophthalmol Soc. 2014; 55:734–9.
11. Junemann AG, Horn FK, Martus P, Korth M. The full-field tempo-ral contrast sensitivity test for glaucoma: influence of cataract. Graefes Arch Clin Exp Ophthalmol. 2000; 238:427–32.
12. Klein J, Pierscionek BK, Lauritzen J. . The effect of cataract on early stage glaucoma detection using spatial and temporal contrast sensitivity tests. PLoS One. 2015; 10:e0128681.
Article
13. Kim CS, Seong GJ, Lee NH. . Prevalence of primary open-angle glaucoma in central South Korea the Namil study. Ophthalmology. 2011; 118:1024–30.
14. Kang BW, Ji YS, Park SW. Analysis of factors related of location of initial visual field defect in normal tenstion glaucoma. J Korean Ophthalmol Soc. 2011; 52:1478–84.
15. Heo JW, Yoon HS, Shin JP. . A validation and reliability study of the Korean version of National Eye Institute Visual Function Questionnaire 25. J Korean Ophthalmol Soc. 2010; 51:1354–67.
Article
16. Crabb DP, Viswanathan AC, McNaught AI. . Simulating bin-ocular visual field status in glaucoma. Br J Ophthalmol. 1998; 82:1236–41.
Article
17. Nelson-Quigg JM, Cello K, Johnson CA.Predicting binocular vis-ual field sensitivity from monocular visual field results. Invest Ophthalmol Vis Sci. 2000; 41:2212–21.
18. Chun YS, Park IK. Comparision of mean deviation between in-tegrated binocular visual field and monocular visual field. J Korean Ophthalmol Soc. 2013; 54:919–26.
19. Lee DI, Park IK, Jeong JH, Chun YS. Quality of life according to location of integrated binocular visual field defect in nor-mal-tension-glaucoma patients. J Korean Ophthalmol Soc. 2016; 57:86–97.
Article
20. Anderson DR. Kist K, editor. The single field printout with Statpac analysis. Automated Static Perimetry. 2nd ed. St. Louis: Mosby;1992. p. chap. 5.
21. Bergua A, Horn FK, Martus P. . Stereoscopic visual evoked po-tentials in normal subjects and patients with open-angle glaucomas. Graefes Arch Clin Exp Ophthalmol. 2004; 242:197–203.
Article
22. Parisi V. Impaired visual function in glaucoma. Clin Neurophysiol. 2001; 112:351–8.
Article
23. Derefeldt G, Lennerstrand G, Lundh B. Age variations in normal human contrast sensitivity. Acta Ophthalmol (Copenh). 1979; 57:679–90.
Article
24. Livingstone MS, Hubel DH. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci. 1987; 7:3416–68.
Article
25. Maunsell JH, Van Essen DC. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol. 1983; 49:1127–47.
Article
26. Schiller PH. The central visual system. Vision Res. 1986; 26:1351–86.
Article
27. Klistorner AI, Graham SL. Early magnocellular loss in glaucoma demonstrated using the pseudorandomly stimulated flash visual evoked potential. J Glaucoma. 1999; 8:140–8.
Article
28. . . Loss of neurons in magnocel-lular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol. 2000; 118:378–84.
29. Yücel YH, Zhang Q, Weinreb RN. . Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003; 22:465–81.
Article
30. Derrington AM, Lennie P. Spatial and temporal contrast sensitiv-ities of neurones in lateral geniculate nucleus of macaque. J Physiol. 1984; 357:219–40.
Article