Chonnam Med J.  2017 Jan;53(1):47-55. 10.4068/cmj.2017.53.1.47.

The Clinical Importance of Perforator Preservation in Intracranial Aneurysm Surgery: An Overview with a Review of the Literature

Affiliations
  • 1Department of Neurosurgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea. taesun1963@yahoo.co.kr

Abstract

Clipping for intracranial aneurysms is done to achieve complete occlusion of the aneurysm without a remnant sac. Despite modern advancements of neurosurgical techniques, morbidity related to the clipping of intracranial aneurysms still exists. Clip occlusion of a parent artery or small hidden perforators commonly leads to permanent neurological deficits, and is a serious and unwanted complication. Thus, preserving blood flow in the branches and perforators of a parent artery is very important for successful surgery without postoperative morbidity and mortality. The aim of this review article is to discuss the consequences of perforator injury and how to avoid this phenomenon in aneurysm surgeries using intraoperative monitoring devices.

Keyword

Arteries; Intracranial Aneurysm; Monitoring, Intraoperative; Neurosurgical Procedures; Surgical Instruments

MeSH Terms

Aneurysm
Arteries
Humans
Intracranial Aneurysm*
Monitoring, Intraoperative
Mortality
Neurosurgical Procedures
Parents
Surgical Instruments

Figure

  • FIG. 1 Schematic illustration of relationships between aneurysms and perforators. The aneurysms involving these perforators arise at four sites: (1) Origin of the anterior choroidal artery, (2) internal carotid bifurcation, (3) middle cerebral artery bifurcation, (4) anterior communicating artery. Courtesy by Rosner et al.33

  • FIG. 2 Representative case of internal carotid artery bifurcation aneruysm. (A) Intraoperative findings of multiple perforators arising behind aneurysm. (B) Indocyanine green video angiography findings showing perforator preservation after aneurysm clipping.


Reference

1. Barrow DL, Boyer KL, Joseph GJ. Intraoperative angiography in the management of neurovascular disorders. Neurosurgery. 1992; 30:153–159.
Article
2. Siasios I, Kapsalaki EZ, Fountas KN. The role of intraoperative micro-Doppler ultrasound in verifying proper clip placement in intracranial aneurysm surgery. Neuroradiology. 2012; 54:1109–1118.
Article
3. Washington CW, Zipfel GJ, Chicoine MR, Derdeyn CP, Rich KM, Moran CJ, et al. Comparing indocyanine green videoangiography to the gold standard of intraoperative digital subtraction angiography used in aneurysm surgery. J Neurosurg. 2013; 118:420–427.
Article
4. de Oliveira JG, Beck J, Seifert V, Teixeira MJ, Raabe A. Assessment of flow in perforating arteries during intracranial aneurysm surgery using intraoperative near-infrared indocyanine green videoangiography. Neurosurgery. 2007; 61:3 Suppl. 63–72. discussion 72-3.
Article
5. Raabe A, Beck J, Gerlach R, Zimmermann M, Seifert V. Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow. Neurosurgery. 2003; 52:132–139. discussion 139.
Article
6. Fischer G, Stadie A, Oertel JM. Near-infrared indocyanine green videoangiography versus microvascular Doppler sonography in aneurysm surgery. Acta Neurochir (Wien). 2010; 152:1519–1525.
Article
7. Kalavakonda C, Sekhar LN, Ramachandran P, Hechl P. Endoscope-assisted microsurgery for intracranial aneurysms. Neurosurgery. 2002; 51:1119–1126. discussion 1126-7.
Article
8. Kinouchi H, Yanagisawa T, Suzuki A, Ohta T, Hirano Y, Sugawara T, et al. Simultaneous microscopic and endoscopic monitoring during surgery for internal carotid artery aneurysms. J Neurosurg. 2004; 101:989–995.
Article
9. Taniguchi M, Takimoto H, Yoshimine T, Shimada N, Miyao Y, Hirata M, et al. Application of a rigid endoscope to the microsurgical management of 54 cerebral aneurysms: results in 48 patients. J Neurosurg. 1999; 91:231–237.
Article
10. Kato Y, Sano H, Nagahisa S, Iwata S, Yoshida K, Yamamoto K, et al. Endoscope-assisted microsurgery for cerebral aneurysms. Minim Invasive Neurosurg. 2000; 43:91–97.
Article
11. van Lindert E, Perneczky A, Fries G, Pierangeli E. The supraorbital keyhole approach to supratentorial aneurysms: concept and technique. Surg Neurol. 1998; 49:481–489. discussion 489-90.
Article
12. Martin NA, Bentson J, Viñuela F, Hieshima G, Reicher M, Black K, et al. Intraoperative digital subtraction angiography and the surgical treatment of intracranial aneurysms and vascular malformations. J Neurosurg. 1990; 73:526–533.
Article
13. Mielke D, Malinova V, Rohde V. Comparison of intraoperative microscopic and endoscopic ICG angiography in aneurysm surgery. Neurosurgery. 2014; 10:Suppl 3. 418–425. discussion 425.
Article
14. Gruber A, Dorfer C, Standhardt H, Bavinzski G, Knosp E. Prospective comparison of intraoperative vascular monitoring technologies during cerebral aneurysm surgery. Neurosurgery. 2011; 68:657–673. discussion 673.
Article
15. Pritz MB. Cerebral aneurysm classification based on angioarchitecture. J Stroke Cerebrovasc Dis. 2011; 20:162–167.
Article
16. Pritz MB. Perforator and secondary branch origin in relation to the neck of saccular, cerebral bifurcation aneurysms. World Neurosurg. 2014; 82:726–732.
Article
17. Caruso G, Vincentelli F, Giudicelli G, Grisoli F, Xu T, Gouaze A. Perforating branches of the basilar bifurcation. J Neurosurg. 1990; 73:259–265.
Article
18. Tulleken CA, Luiten ML. The basilar artery bifurcation: microscopical anatomy. Acta Neurochir (Wien). 1987; 85:50–55.
Article
19. Pedroza A, Dujovny M, Ausman JI, Diaz FG, Cabezudo Artero J, et al. Microvascular anatomy of the interpeduncular fossa. J Neurosurg. 1986; 64:484–493.
Article
20. Da Pian R, Pasqualin A, Scienza R. Direct microsurgical approach to aneurysms of the internal carotid bifurcation. Surg Neurol. 1980; 13:27–37.
21. Kyoshima K, Kobayashi S, Nitta J, Osawa M, Shigeta H, Nakagawa F. Clinical analysis of internal carotid artery aneurysms with reference to classification and clipping techniques. Acta Neurochir (Wien). 1998; 140:933–942.
Article
22. Laranjeira M, Sadasivan B, Ausman JI. Direct surgery for carotid bifurcation artery aneurysms. Surg Neurol. 1990; 34:250–254.
Article
23. Miyazawa N, Nukui H, Horikoshi T, Yagishita T, Sugita M, Kanemaru K. Surgical management of aneurysms of the bifurcation of the internal carotid artery. Clin Neurol Neurosurg. 2002; 104:103–114.
Article
24. van Rooij WJ, Sluzewski M, Beute GN. Internal carotid bifurcation aneurysms: frequency, angiographic anatomy and results of coiling in 50 aneurysms. Neuroradiology. 2008; 50:583–587.
Article
25. Lehecka M, Dashti R, Romani R, Celik O, Navratil O, Kivipelto L, et al. Microneurosurgical management of internal carotid artery bifurcation aneurysms. Surg Neurol. 2009; 71:649–667.
Article
26. Dashti R, Hernesniemi J, Lehto H, Niemelä M, Lehecka M, Rinne J, et al. Microneurosurgical management of proximal anterior cerebral artery aneurysms. Surg Neurol. 2007; 68:366–377.
Article
27. Dashti R, Rinne J, Hernesniemi J, Niemelä M, Kivipelto L, Lehecka M, et al. Microneurosurgical management of proximal middle cerebral artery aneurysms. Surg Neurol. 2007; 67:6–14.
Article
28. Gibo H, Lenkey C, Rhoton AL Jr. Microsurgical anatomy of the supraclinoid portion of the internal carotid artery. J Neurosurg. 1981; 55:560–574.
Article
29. Marinković S, Gibo H, Milisavljević M. The surgical anatomy of the relationships between the perforating and the leptomeningeal arteries. Neurosurgery. 1996; 39:72–83.
Article
30. Marinković SV, Milisavljević MM, Marinković ZD. The perforating branches of the internal carotid artery: the microsurgical anatomy of their extracerebral segments. Neurosurgery. 1990; 26:472–478. discussion 478-9.
31. Türe U, Yaşargil MG, Al-Mefty O, Yaşargil DC. Arteries of the insula. J Neurosurg. 2000; 92:676–687.
Article
32. Rinne J, Hernesniemi J, Niskanen M, Vapalahti M. Analysis of 561 patients with 690 middle cerebral artery aneurysms: anatomic and clinical features as correlated to management outcome. Neurosurgery. 1996; 38:2–11.
Article
33. Rosner SS, Rhoton AL Jr, Ono M, Barry M. Microsurgical anatomy of the anterior perforating arteries. J Neurosurg. 1984; 61:468–485.
Article
34. Perlmutter D, Rhoton AL Jr. Microsurgical anatomy of anterior cerebral anterior communicating recurrent artery complex. Surg Forum. 1976; 27:464–465.
35. Handa J, Nakasu Y, Matsuda M, Kyoshima K. Aneurysms of the proximal anterior cerebral artery. Surg Neurol. 1984; 22:486–490.
Article
36. Hino A, Fujimoto M, Iwamoto Y, Oka H, Echigo T. Surgery of proximal anterior cerebral artery aneurysms. Acta Neurochir (Wien). 2002; 144:1291–1296. discussion 1296.
37. Suzuki M, Onuma T, Sakurai Y, Mizoi K, Ogawa A, Yoshimoto T. Aneurysms arising from the proximal (A1) segment of the anterior cerebral artery. A study of 38 cases. J Neurosurg. 1992; 76:455–458.
Article
38. Wakabayashi T, Tamaki N, Yamashita H, Saya H, Suyama T, Matsumoto S. Angiographic classification of aneurysms of the horizontal segment of the anterior cerebral artery. Surg Neurol. 1985; 24:31–34.
Article
39. Wanibuchi M, Kurokawa Y, Ishiguro M, Fujishige M, Inaba K. Characteristics of aneurysms arising from the horizontal portion of the anterior cerebral artery. Surg Neurol. 2001; 55:148–154. discussion 154-5.
Article
40. Lee JM, Joo SP, Kim TS, Go EJ, Choi HY, Seo BR. Surgical management of anterior cerebral artery aneurysms of the proximal (A1) segment. World Neurosurg. 2010; 74:478–482.
Article
41. Evans AL, Corkill RA, Wenderoth JD. Ruptured fusiform aneurysm of fenestrated A1 segment of the anterior cerebral artery. Case report and review of the literature. Neuroradiology. 2006; 48:196–199.
Article
42. Hirao J, Okamoto H, Watanabe T, Asano S, Teraoka A. Dissecting aneurysms at the A1 segment of the anterior cerebral artery--two case reports. Neurol Med Chir (Tokyo). 2001; 41:271–278.
Article
43. Kashimura H, Mase T, Ogasawara K, Ogawa A, Endo H. Trapping and vascular reconstruction for ruptured fusiform aneurysm in the proximal A1 segment of the anterior cerebral artery. Neurol Med Chir (Tokyo). 2006; 46:340–343.
Article
44. Nomura M, Kida S, Kita D, Higashi R, Hasegawa M, Matsui O, et al. Fusiform aneurysm of the proximal anterior cerebral artery (A1). Acta Neurochir (Wien). 2000; 142:1163–1164.
Article
45. Dunker RO, Harris AB. Surgical anatomy of the proximal anterior cerebral artery. J Neurosurg. 1976; 44:359–367.
Article
46. Ostrowski AZ, Webster JE, Gurdjian ES. The proximal anterior cerebral artery: an anatomic study. Arch Neurol. 1960; 3:661–664.
Article
47. Gomes F, Dujovny M, Umansky F, Ausman JI, Diaz FG, Ray WJ, et al. Microsurgical anatomy of the recurrent artery of Heubner. J Neurosurg. 1984; 60:130–139.
Article
48. Tulleken CA. A study of the anatomy of the anterior communicating artery with the aid of the operating microscope. Clin Neurol Neurosurg. 1978; 80:169–173.
Article
49. Drake CG, Vanderlinden RG, Amacher AL. Carotid-choroidal aneurysms. J Neurosurg. 1968; 29:32–36.
Article
50. Friedman JA, Pichelmann MA, Piepgras DG, Atkinson JL, Maher CO, Meyer FB, et al. Ischemic complications of surgery for anterior choroidal artery aneurysms. J Neurosurg. 2001; 94:565–572.
Article
51. Yasargil MG, Yonas H, Gasser JC. Anterior choroidal artery aneurysms: their anatomy and surgical significance. Surg Neurol. 1978; 9:129–138.
52. Erdem A, Yaşargil G, Roth P. Microsurgical anatomy of the hippocampal arteries. J Neurosurg. 1993; 79:256–265.
Article
53. Rhoton AL Jr, Fujii K, Fradd B. Microsurgical anatomy of the anterior choroidal artery. Surg Neurol. 1979; 12:171–187.
54. Fujii K, Lenkey C, Rhoton AL Jr. Microsurgical anatomy of the choroidal arteries. Fourth ventricle and cerebellopontine angles. J Neurosurg. 1980; 52:504–524.
Article
55. Marinković S, Gibo H, Brigante L, Nikodijević I, Petrović P. The surgical anatomy of the perforating branches of the anterior choroidal artery. Surg Neurol. 1999; 52:30–36.
Article
56. Saeki N, Rhoton AL Jr. Microsurgical anatomy of the upper basilar artery and the posterior circle of Willis. J Neurosurg. 1977; 46:563–578.
Article
57. Yoshioka H, Kinouchi H. The roles of endoscope in aneurysmal surgery. Neurol Med Chir (Tokyo). 2015; 55:469–478.
Article
58. Apuzzo ML, Heifetz MD, Weiss MH, Kurze T. Neurosurgical endoscopy using the side-viewing telescope. J Neurosurg. 1977; 46:398–400.
Article
59. Cohen AR, Perneczky A, Rodziewicz GS, Gingold SI. Endoscope-assisted craniotomy: approach to the rostral brain stem. Neurosurgery. 1995; 36:1128–1129. discussion 1129-30.
60. Fischer G, Oertel J, Perneczky A. Endoscopy in aneurysm surgery. Neurosurgery. 2012; 70:2 Suppl Operative. 184–190. discussion 190-1.
Article
61. Fischer J, Mustafa H. Endoscopic-guided clipping of cerebral aneurysms. Br J Neurosurg. 1994; 8:559–565.
Article
62. Galzio RJ, Di Cola F, Raysi Dehcordi S, Ricci A, De Paulis D. Endoscope-assisted microneurosurgery for intracranial aneurysms. Front Neurol. 2013; 4:201.
Article
63. Profeta G, De Falco R, Ambrosio G, Profeta L. Endoscope-assisted microneurosurgery for anterior circulation aneurysms using the angle-type rigid endoscope over a 3-year period. Childs Nerv Syst. 2004; 20:811–815.
Article
64. Wang E, Yong NP, Ng I. Endoscopic assisted microneurosurgery for cerebral aneurysms. J Clin Neurosci. 2003; 10:174–176.
65. Fries G, Perneczky A. Endoscope-assisted brain surgery: part 2--analysis of 380 procedures. Neurosurgery. 1998; 42:226–231. discussion 231-2.
Article
66. Perneczky A, Fries G. Endoscope-assisted brain surgery: part 1--evolution, basic concept, and current technique. Neurosurgery. 1998; 42:219–224. discussion 224-5.
Article
67. Kuroda K, Kinouchi H, Kanemaru K, Nishiyama Y, Ogiwara M, Yoshioka H, et al. Intra-arterial injection fluorescein videoangiography in aneurysm surgery. Neurosurgery. 2013; 72:2 Suppl Operative. ons141–ons150. discussion ons150.
Article
68. Raabe A, Nakaji P, Beck J, Kim LJ, Hsu FP, Kamerman JD, et al. Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg. 2005; 103:982–989.
Article
69. Yoshioka H, Kinouchi H, Nishiyama Y, Kanemaru K, Yagi T, Hanihara M, et al. Advantage of microscope integrated for both indocyanine green and fluorescein videoangiography on aneurysmal surgery: case report. Neurol Med Chir (Tokyo). 2014; 54:192–195.
Article
70. Wrobel CJ, Meltzer H, Lamond R, Alksne JF. Intraoperative assessment of aneurysm clip placement by intravenous fluorescein angiography. Neurosurgery. 1994; 35:970–973. discussion 973.
Article
71. Suzuki K, Kodama N, Sasaki T, Matsumoto M, Ichikawa T, Munakata R, et al. Confirmation of blood flow in perforating arteries using fluorescein cerebral angiography during aneurysm surgery. J Neurosurg. 2007; 107:68–73.
Article
72. Gilsbach JM, Harders AG. Microvascular and transcranial Doppler sonographic evaluation of cerebral aneurysm flow pattern. Neurol Res. 1989; 11:41–48.
Article
73. Gilsbach JM, Hassler WE. Intraoperative Doppler and real time sonography in neurosurgery. Neurosurg Rev. 1984; 7:199–208.
Article
74. Marchese E, Albanese A, Denaro L, Vignati A, Fernandez E, Maira G. Intraoperative microvascular Doppler in intracranial aneurysm surgery. Surg Neurol. 2005; 63:336–342. discussion 342.
Article
75. Cui H, Wang Y, Yin Y, Wan J, Fei Z, Gao W, et al. Role of intraoperative microvascular Doppler in the microsurgical management of intracranial aneurysms. J Clin Ultrasound. 2011; 39:27–31.
Article
76. Ishizaki T, Endo O, Fujii K, Matsudaira T, Okada T, Kobayashi N, et al. Usefulness and problems of intraoperative monitoring for unruptured aneurysm surgery with the motor evoked potential. No Shinkei Geka. 2016; 44:283–293.
Full Text Links
  • CMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr