J Korean Neurosurg Soc.  2017 Jan;60(1):21-29. 10.3340/jkns.2016.0404.005.

The Influence of Biomarker Mutations and Systemic Treatment on Cerebral Metastases from NSCLC Treated with Radiosurgery

Affiliations
  • 1Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. jilee@skku.edu

Abstract


OBJECTIVE
The purpose of this study was to analyze outcomes and identify prognostic factors in patients with cerebral metastases from non-small cell lung cancer (NSCLC) treated with gamma knife radiosurgery (GKS) particularly, focusing on associations of biomarkers and systemic treatments.
METHODS
We retrospectively reviewed the medical records of 134 patients who underwent GKS for brain metastases due to NSCLC between January 2002 and December 2012. Representative biomarkers including epidermal growth factor receptor (EGFR) mutation, K-ras mutation, and anaplastic lymphoma kinase (ALK) mutation status were investigated.
RESULTS
The median overall survival after GKS was 22.0 months (95% confidence interval [CI], 8.8-35.1 months). During follow-up, 63 patients underwent salvage treatment after GKS. The median salvage treatment-free survival was 7.9 months (95% CI, 5.2-10.6 months). Multivariate analysis revealed that lower recursive partition analysis (RPA) class, small number of brain lesions, EGFR mutation (+), and ALK mutation (+) were independent positive prognostic factors associated with longer overall survival. Patients who received target agents 30 days after GKS experienced significant improvements in overall survival and salvage treatment-free survival than patients who never received target agents and patients who received target agents before GKS or within 30 days (median overall survival: 5.0 months vs. 18.2 months, and 48.0 months with p-value=0.026; median salvage treatment-free survival: 4.3 months vs. 6.1 months and 16.6 months with p-value=0.006, respectively). To assess the influence of target agents on the pattern of progression, cases that showed local recurrence and new lesion formation were analyzed according to target agents, but no significant effects were identified.
CONCLUSION
The prognosis of patients with brain metastases of NSCLC after GKS significantly differed according to specific biomarkers (EGFR and ALK mutations). Our results show that target agents combined with GKS was related to significantly longer overall survival, and salvage treatment-free survival. However, target agents were not specifically associated with improved local control of the lesion treated by GKS either development of new lesions. Therefore, it seems that currently popular target agents do not affect brain lesions themselves, and can prolong survival by controlling systemic disease status.

Keyword

Non-small cell lung cancer; EGFR; K-ras; ALK; Gamma knife radiosurgery

MeSH Terms

Biomarkers
Brain
Carcinoma, Non-Small-Cell Lung
Follow-Up Studies
Humans
Lymphoma
Medical Records
Multivariate Analysis
Neoplasm Metastasis*
Phosphotransferases
Prognosis
Radiosurgery*
Receptor, Epidermal Growth Factor
Recurrence
Retrospective Studies
Salvage Therapy
Biomarkers
Phosphotransferases
Receptor, Epidermal Growth Factor

Figure

  • Fig. 1 Kaplan-Meier curve comparing overall survival and salvage treatment-free survival according to the manner of using target agents. Group A : patients who never received target agents; Group B : patients who received target agents before GKS or within 30 days; Group C : patients received target agents 30 days after receiving GKS. GKS : gamma knife radiosurgery.

  • Fig. 2 Kaplan-Meier curve comparing salvage treatment-free survival of the influence of target agents to the pattern of progression, local recurrences and new lesion development. Group A : patients who never received target agents; Group B : patients who received target agents before GKS or within 30 days; Group C : patients received target agents 30 days after receiving GKS. GKS : gamma knife radiosurgery.


Cited by  1 articles

Immune Checkpoint Inhibitors for Non-Small-Cell Lung Cancer with Brain Metastasis : The Role of Gamma Knife Radiosurgery
Min Ho Lee, Kyung-Rae Cho, Jung Won Choi, Doo-Sik Kong, Ho Jun Seol, Do-Hyun Nam, Hyun Ae Jung, Jong-Mu Sun, Se-Hoon Lee, Jin Seok Ahn, Myung-Ju Ahn, Keunchil Park, Jung-Il Lee
J Korean Neurosurg Soc. 2021;64(2):271-281.    doi: 10.3340/jkns.2020.0135.


Reference

References

1. Ahn HK, Jeon K, Yoo H, Han B, Lee SJ, Park H, et al. Successful treatment with crizotinib in mechanically ventilated patients with ALK positive non-small-cell lung cancer. J Thorac Oncol. 8:250–253. 2013.
Article
2. Alexander E 3rd, Moriarty TM, Davis RB, Wen PY, Fine HA, Black PM, et al. Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. J Natl Cancer Inst. 87:34–40. 1995.
Article
3. Andrews DW, Scott CB, Sperduto PW, Flanders AE, Gaspar LE, Schell MC, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet. 363:1665–1672. 2004.
Article
4. Baschnagel AM, Meyer KD, Chen PY, Krauss DJ, Olson RE, Pieper DR, et al. Tumor volume as a predictor of survival and local control in patients with brain metastases treated with gamma knife surgery. J Neurosurg. 119:1139–1144. 2013.
Article
5. Bhatnagar AK, Flickinger JC, Kondziolka D, Lunsford LD. Stereotactic radiosurgery for four or more intracranial metastases. Int J Radiat Oncol Biol Phys. 64:898–903. 2006.
Article
6. Bianco C, Tortora G, Bianco R, Caputo R, Veneziani BM, Caputo R, et al. Enhancement of antitumor activity of ionizing radiation by combined treatment with the selective epidermal growth factor receptor-tyrosine kinase inhibitor ZD1839 (Iressa). Clin Cancer Res. 8:3250–3258. 2002.
7. Billing PS, Miller DL, Allen MS, Deschamps C, Trastek VF, Pairolero PC. Surgical treatment of primary lung cancer with synchronous brain metastases. J Thorac Cardiovasc Surg. 122:548–553. 2001.
Article
8. Bonnette P, Puyo P, Gabriel C, Giudicelli R, Regnard JF, Riquet M, et al. Surgical management of non-small cell lung cancer with synchronous brain metastases. Chest. 119:1469–1475. 2001.
Article
9. Chidel MA, Suh JH, Greskovich JF, Kupelian PA, Barnett GH. Treatment outcome for patients with primary nonsmall-cell lung cancer and synchronous brain metastasis. Radiat Oncol Investig. 7:313–319. 1999.
Article
10. Chinnaiyan P, Huang S, Vallabhaneni G, Armstrong E, Varambally S, Tomlins SA, et al. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res. 65:3328–3335. 2005.
Article
11. Cho KR, Lee MH, Kong DS, Seol HJ, Nam DH, Sun JM, et al. Outcome of gamma knife radiosurgery for metastatic brain tumors derived from non-small cell lung cancer. J Neurooncol. 125:331–338. 2015.
Article
12. Choi YL, Sun JM, Cho J, Rampal S, Han J, Parasuraman B, et al. EGFR mutation testing in patients with advanced non-small cell lung cancer: a comprehensive evaluation of real-world practice in an East Asian tertiary hospital. PLoS One. 8:e56011. 2013.
Article
13. Cochran DC, Chan MD, Aklilu M, Lovato JF, Alphonse NK, Bourland JD, et al. The effect of targeted agents on outcomes in patients with brain metastases from renal cell carcinoma treated with Gamma Knife surgery. J Neurosurg. 116:978–983. 2012.
Article
14. Cortot AB, Italiano A, Burel-Vandenbos F, Martel-Planche G, Hainaut P. KRAS mutation status in primary nonsmall cell lung cancer and matched metastases. Cancer. 116:2682–2687. 2010.
Article
15. Galluzzi S, Payne PM. Brain metastases from primary bronchial carcinoma: a statistical study of 741 necropsies. Br J Cancer. 10:408–414. 1956.
Article
16. Harris S, Chan MD, Lovato JF, Ellis TL, Tatter SB, Bourland JD, et al. Gamma knife stereotactic radiosurgery as salvage therapy after failure of whole-brain radiotherapy in patients with small-cell lung cancer. Int J Radiat Oncol Biol Phys. 83:e53–59. 2012.
Article
17. Johnson AG, Ruiz J, Hughes R, Page BR, Isom S, Lucas JT, et al. Impact of systemic targeted agents on the clinical outcomes of patients with brain metastases. Oncotarget. 6:18945–18955. 2015.
Article
18. Karampeazis A, Voutsina A, Souglakos J, Kentepozidis N, Giassas S, Christofillakis C, et al. Pemetrexed versus erlotinib in pretreated patients with advanced non-small cell lung cancer: a Hellenic Oncology Research Group (HORG) randomized phase 3 study. Cancer. 119:2754–2764. 2013.
Article
19. Knights EM Jr. Metastatic tumors of the brain and their relation to primary and secondary pulmonary cancer. Cancer. 7:259–265. 1954.
Article
20. Lee HY, Ahn HK, Jeong JY, Kwon MJ, Han JH, Sun JM, et al. Favorable clinical outcomes of pemetrexed treatment in anaplastic lymphoma kinase positive non-small-cell lung cancer. Lung Cancer. 79:40–45. 2013.
Article
21. Lee S, Kim Y, Sun JM, Choi YL, Kim JG, Shim YM, et al. Molecular profiles of EGFR, K-ras, c-met, and FGFR in pulmonary pleomorphic carcinoma, a rare lung malignancy. J Cancer Res Clin Oncol. 137:1203–1211. 2011.
Article
22. Likhacheva A, Pinnix CC, Parikh NR, Allen PK, McAleer MF, Chiu MS, et al. Predictors of survival in contemporary practice after initial radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys. 85:656–661. 2013.
Article
23. Luo D, Ye X, Hu Z, Peng K, Song Y, Yin X, et al. EGFR mutation status and its impact on survival of Chinese non-small cell lung cancer patients with brain metastases. Tumour Biol. 35:2437–2444. 2014.
Article
24. Luo S, Chen L, Chen X, Xie X. Evaluation on efficacy and safety of tyrosine kinase inhibitors plus radiotherapy in NSCLC patients with brain metastases. Oncotarget. 6:16725–16734. 2015.
Article
25. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 362:2380–2388. 2010.
Article
26. Magilligan DJ Jr, Duvernoy C, Malik G, Lewis JW Jr, Knighton R, Ausman JI. Surgical approach to lung cancer with solitary cerebral metastasis: twenty-five years’ experience. Ann Thorac Surg. 42:360–364. 1986.
Article
27. Matsumoto S, Takahashi K, Iwakawa R, Matsuno Y, Nakanishi Y, Kohno T, et al. Frequent EGFR mutations in brain metastases of lung adenocarcinoma. Int J Cancer. 119:1491–1494. 2006.
28. Mekhail T, Sombeck M, Sollaccio R. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. Curr Oncol Rep. 13:255–258. 2011.
Article
29. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 11:121–128. 2010.
Article
30. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 361:947–957. 2009.
Article
31. Newman SJ, Hansen HH. Proceedings: Frequency, diagnosis, and treatment of brain metastases in 247 consecutive patients with bronchogenic carcinoma. Cancer. 33:492–496. 1974.
Article
32. Noordijk EM, Vecht CJ, Haaxma-Reiche H, Padberg GW, Voormolen JH, Hoekstra FH, et al. The choice of treatment of single brain metastasis should be based on extracranial tumor activity and age. Int J Radiat Oncol Biol Phys. 29:711–717. 1994.
Article
33. Nose N, Sugio K, Oyama T, Nozoe T, Uramoto H, Iwata T, et al. Association between estrogen receptor-beta expression and epidermal growth factor receptor mutation in the postoperative prognosis of adenocarcinoma of the lung. J Clin Oncol. 27:411–417. 2009.
Article
34. Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med. 322:494–500. 1990.
Article
35. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13:239–246. 2012.
36. Schouten LJ, Rutten J, Huveneers HA, Twijnstra A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer. 94:2698–2705. 2002.
Article
37. Sørensen JB, Hansen HH, Hansen M, Dombernowsky P. Brain metastases in adenocarcinoma of the lung: frequency, risk groups, and prognosis. J Clin Oncol. 6:1474–1480. 1988.
Article
38. Sperduto PW, Wang M, Robins HI, Schell MC, Werner-Wasik M, Komaki R, et al. A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: Radiation Therapy Oncology Group 0320. Int J Radiat Oncol Biol Phys. 85:1312–1318. 2013.
Article
39. Sun M, Behrens C, Feng L, Ozburn N, Tang X, Yin G, et al. HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin Cancer Res. 15:4829–4837. 2009.
Article
40. Yamamoto M, Serizawa T, Shuto T, Akabane A, Higuchi Y, Kawagishi J, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 15:387–395. 2014.
Article
41. Zhuang H, Wang J, Zhao L, Yuan Z, Wang P. The theoretical foundation and research progress for WBRT combined with erlotinib for the treatment of multiple brain metastases in patients with lung adenocarcinoma. Int J Cancer. 133:2277–2283. 2013.
Article
42. Zhuang HQ, Sun J, Yuan ZY, Wang J, Zhao LJ, Wang P, et al. Radiosensitizing effects of gefitinib at different administration times in vitro. Cancer Sci. 100:1520–1525. 2009.
Article
Full Text Links
  • JKNS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr