Ann Lab Med.  2015 Jan;35(1):22-27. 10.3343/alm.2015.35.1.22.

Calreticulin Exon 9 Mutations in Myeloproliferative Neoplasms

Affiliations
  • 1Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Korea. ksksmom@dsmc.or.kr
  • 2Department of Laboratory Medicine, Yeungnam University College of Medicine, Daegu, Korea.

Abstract

BACKGROUND
Calreticulin (CALR) mutations were recently discovered in patients with myeloproliferative neoplasms (MPNs). We studied the frequency and type of CALR mutations and their hematological characteristics.
METHODS
A total of 168 MPN patients (36 polycythemia vera [PV], 114 essential thrombocythemia [ET], and 18 primary myelofibrosis [PMF] cases) were included in the study. CALR mutation was analyzed by the direct sequencing method.
RESULTS
CALR mutations were detected in 21.9% of ET and 16.7% of PMF patients, which accounted for 58.5% and 33.3% of ET and PMF patients without Janus kinase 2 (JAK2) or myeloproliferative leukemia virus oncogenes (MPL) mutations, respectively. A total of five types of mutation were detected, among which, L367fs*46 (53.6%) and K385fs*47 (35.7%) were found to be the most common. ET patients with CALR mutation had lower leukocyte counts and ages compared with JAK2-mutated ET patients.
CONCLUSION
Genotyping for CALR could be a useful diagnostic tool for JAK2-or MPL-negative ET or PMF patients. CALR mutation may be a distinct disease group, with different hematological characteristics than that of JAK2-positive patients.

Keyword

Calreticulin; JAK2; MPL; Myeloproliferative neoplasm

MeSH Terms

Adolescent
Adult
Aged
Aged, 80 and over
Amino Acid Sequence
Base Sequence
Calreticulin/*genetics
DNA Mutational Analysis
Exons
Female
Humans
Janus Kinase 2/genetics
Leukocyte Count
Male
Middle Aged
Molecular Sequence Data
Mutation
Myeloproliferative Disorders/diagnosis/*genetics/pathology
Receptors, Thrombopoietin/genetics
Young Adult
Calreticulin
Janus Kinase 2
Receptors, Thrombopoietin

Figure

  • Fig. 1 The five types of calreticulin mutations identified in this study. The arrowheads indicate the points where insertion or deletion occurred. Square boxes represent nucleotide sequences that were deleted or inserted.


Cited by  1 articles

Screening PCR Versus Sanger Sequencing: Detection of CALR Mutations in Patients With Thrombocytosis
Ji Hun Jeong, Hwan Tae Lee, Ja Young Seo, Yiel Hea Seo, Kyung Hee Kim, Moon Jin Kim, Jae Hoon Lee, Jinny Park, Jun Shik Hong, Pil Whan Park, Jeong Yeal Ahn
Ann Lab Med. 2016;36(4):291-299.    doi: 10.3343/alm.2016.36.4.291.


Reference

1. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005; 352:1779–1790. PMID: 15858187.
2. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006; 3:e270. PMID: 16834459.
Article
3. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010; 24:1128–1138. PMID: 20428194.
Article
4. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013; 369:2379–2390. PMID: 24325356.
Article
5. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013; 369:2391–2405. PMID: 24325359.
6. Coppolino MG, Woodside MJ, Demaurex N, Grinstein S, St-Arnaud R, Dedhar S. Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature. 1997; 386:843–847. PMID: 9126744.
Article
7. Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014; 28:1472–1477. PMID: 24402162.
Article
8. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014; 123:2220–2228. PMID: 24478400.
Article
9. Rotunno G, Mannarelli C, Guglielmelli P, Pacilli A, Pancrazzi A, Pieri L, et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood. 2014; 123:1552–1555. PMID: 24371211.
Article
10. Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014; 123:1544–1551. PMID: 24366362.
Article
11. Li B, Xu J, Wang J, Gale RP, Xu Z, Cui Y, et al. Calreticulin mutations in Chinese with primary myelofibrosis. Haematologica. 2014; pii: haematol.2014.109249. [Epub ahead of print].
Article
12. Patnaik MM, Belachew A, Finke C, Lasho TL, Hanson CA, Tefferi A. CALR mutations are infrequent in WHO-defined refractory anemia with ring sideroblasts. Leukemia. 2014; 28:1370–1371. PMID: 24476767.
Article
13. Vannucchi AM, Rotunno G, Bartalucci N, Raugei G, Carrai V, Balliu M, et al. Calreticulin mutation-specific immunostaining in myeloproliferative neoplasms: pathogenetic insight and diagnostic value. Leukemia. 2014; 28:1811–1818. PMID: 24618731.
Article
14. Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C, Mannarelli C, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014; 28:1494–1500. PMID: 24496303.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr