Investig Clin Urol.  2016 Jan;57(1):21-29. 10.4111/icu.2016.57.1.21.

Therapeutic efficacy of nanomedicines for prostate cancer: An update

Affiliations
  • 1Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea. vinoth.lakshmanan@gmail.com

Abstract

Recent advances in cancer nanomedicine have attracted remarkable attention in medical sectors. Pharmacologic research on nanomedicines, including targeted cancer therapy, has increased dramatically in the past 5 years. The success stories of nanomedicines in the clinical field include the fabrication of nanomedicines that show maximum loading efficiency into carriers, maximal release kinetics, and minimum toxicity to healthy cells. Nanoparticle-mediated medicines have been developed to specifically target prostate cancer tissue by use of aptamers, antibody targeting, and sustained release of nanomedicines in a dose- and time-dependent manner. Nanomedicines have been developed for therapeutic application in combination with image-guided therapy in real time. The scope of one of these nanomedicines, Abraxane (paclitaxel), may be extended to prostate cancer therapeutic applications for better quality of patient life and longer survival. This review provides an update on the latest directions and developments in nanomedicines for prostate cancer.

Keyword

Diagnosis; Drug delivery systems; Nanomedicine; Prostate neoplasms; Therapy

MeSH Terms

Antineoplastic Agents/administration & dosage
Drug Carriers
Drug Delivery Systems/*methods
Genetic Therapy/methods
Humans
Male
Nanomedicine/methods
Nanoparticles/*administration & dosage
Prostatic Neoplasms/*therapy
Antineoplastic Agents
Drug Carriers

Figure

  • Fig. 1 Schematic representation of the nanomedicine and nanogene for prostate cancer therapy.


Reference

1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012; 62:10–29.
2. Han HH, Park JW, Na JC, Chung BH, Kim CS, Ko WJ. Epidemiology of prostate cancer in South Korea. Prostate Int. 2015; 3:99–102.
3. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001; 19:316–317.
4. NanoMarkets white paper. Nano-enabled drug delivery systems market: the impact of nanotechnology in drug delivery: global developments, market analysis, and future prospects [Internet]. Sterling (VA): NanoMarkets, LC;2004. cited 2015 Sep 11. Available from: http://www.pharmamanufacturing.com/assets/Media/MediaManager/NanoMarkets_Drug_Delivery_122004.pdf.
5. Safra T, Muggia F, Jeffers S, Tsao-Wei DD, Groshen S, Lyass O, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol. 2000; 11:1029–1033.
6. Lakshmanan VK, Snima KS, Bumgardner JD, Nair SV, Jayakumar R. Chitosan-based nanoparticles in cancer therapy. Adv Polym Sci. 2011; 243:55–92.
7. Chen Z, Penet MF, Nimmagadda S, Li C, Banerjee SR, Winnard PT Jr, et al. PSMA-targeted theranostic nanoplex for prostate cancer therapy. ACS Nano. 2012; 6:7752–7762.
8. Cherian AM, Nair SV, Lakshmanan VK. The role of nanotechnology in prostate cancer theranostic applications. J Nanosci Nanotechnol. 2014; 14:841–852.
9. Hickey JW, Santos JL, Williford JM, Mao HQ. Control of polymeric nanoparticle size to improve therapeutic delivery. J Control Release. 2015; 219:536–547.
10. Zhou C, Long M, Qin Y, Sun X, Zheng J. Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed Engl. 2011; 50:3168–3172.
11. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007; 25:1165–1170.
12. Lee JH, Lee K, Moon SH, Lee Y, Park TG, Cheon J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl. 2009; 48:4174–4179.
13. Cheon J, Lee JH. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res. 2008; 41:1630–1640.
14. Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev. 2012; 64:1394–1416.
15. Zhang L, Zhang N. How nanotechnology can enhance docetaxel therapy. Int J Nanomedicine. 2013; 8:2927–2941.
16. Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm. 2005; 293:261–270.
17. Schroeder U, Sommerfeld P, Ulrich S, Sabel BA. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci. 1998; 87:1305–1307.
18. Raghuvanshi RS, Katare YK, Lalwani K, Ali MM, Singh O, Panda AK. Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Int J Pharm. 2002; 245:109–121.
19. Kreuter J. Influence of chronobiology on the nanoparticle-mediated drug uptake into the brain. Pharmaceutics. 2015; 7:3–9.
20. Fassas A, Buffels R, Kaloyannidis P, Anagnostopoulos A. Safety of high-dose liposomal daunorubicin (daunoxome) for refractory or relapsed acute myeloblastic leukaemia. Br J Haematol. 2003; 122:161–163.
21. Ding Y, Wang Y, Opoku-Damoah Y, Wang C, Shen L, Yin L, et al. Dual-functional bio-derived nanoparticulates for apoptotic antitumor therapy. Biomaterials. 2015; 72:90–103.
22. Budhian A, Siegel SJ, Winey KI. Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J Microencapsul. 2005; 22:773–785.
23. Gomez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E. Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm. 2007; 331:153–159.
24. Cheng Q, Feng J, Chen J, Zhu X, Li F. Brain transport of neurotoxin-I with PLA nanoparticles through intranasal administration in rats: a microdialysis study. Biopharm Drug Dispos. 2008; 29:431–439.
25. Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release. 2003; 86:33–48.
26. Coester C, Kreuter J, von Briesen H, Langer K. Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). Int J Pharm. 2000; 196:147–149.
27. Damge C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release. 2007; 117:163–170.
28. Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev. 2007; 59:505–521.
29. Calvo P, Gouritin B, Brigger I, Lasmezas C, Deslys J, Williams A, et al. PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J Neurosci Methods. 2001; 111:151–155.
30. Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci. 2006; 48:171–176.
31. Hogberg T, Glimelius B, Nygren P. SBU-group. Swedish council of technology assessment in health care: a systematic overview of chemotherapy effects in ovarian cancer. Acta Oncol. 2001; 40:340–360.
32. Hundahl SA. Surgical quality in trials of adjuvant cancer therapy. J Surg Oncol. 2002; 80:177–180.
33. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007; 334:115–124.
34. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release. 2002; 79:123–135.
35. Nateghian N, Goodarzi N, Amini M, Atyabi F, Khorramizadeh MR, Dinarvand R. Biotin/Folate decorated human serum albumin-nanoparticles of docetaxel: comparison of chemically conjugated nanostructures and physically loaded nanoparticles for targeting of breast cancer. Chem Biol Drug Des. 2015; Jul. 28. [Epub]. DOI: 10.1111/cbdd.12624.
36. Goodarzi N, Ghahremani MH, Amini M, Atyabi F, Ostad SN, Shabani Ravari N, et al. CD44-targeted docetaxel conjugate for cancer cells and cancer stem-like cells: a novel hyaluronic acidbased drug delivery system. Chem Biol Drug Des. 2014; 83:741–752.
37. Jafari Malek S, Khoshchehreh R, Goodarzi N, Khoshayand MR, Amini M, Atyabi F, et al. cis-Dichlorodiamminoplatinum (II) glyconanoparticles by drug-induced ionic gelation technique targeted to prostate cancer: preparation, optimization and in vitro characterization. Colloids Surf B Biointerfaces. 2014; 122:350–358.
38. Rastogi V, Yadav P, Bhattacharya SS, Mishra AK, Verma N, Verma A, et al. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Deliv. 2014; 2014:670815.
39. Drbohlavova J, Chomoucka J, Adam V, Ryvolova M, Eckschlager T, Hubalek J, et al. Nanocarriers for anticancer drugs: new trends in nanomedicine. Curr Drug Metab. 2013; 14:547–564.
40. Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010; 148:135–146.
41. Lacerda L, Russier J, Pastorin G, Herrero MA, Venturelli E, Dumortier H, et al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials. 2012; 33:3334–3343.
42. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000; 65:271–284.
43. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013; 65:1964–2015.
44. Weng CJ, Yen GC. Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev. 2012; 31:323–351.
45. Tang SN, Singh C, Nall D, Meeker D, Shankar S, Srivastava RK. The dietary bioflavonoid quercetin synergizes with epigal-locathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal. 2010; 5:14.
46. Khan N, Bharali DJ, Adhami VM, Siddiqui IA, Cui H, Shabana SM, et al. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis. 2014; 35:415–423.
47. Castro Nava A, Cojoc M, Peitzsch C, Cirillo G, Kurth I, Fuessel S, et al. Development of novel radiochemotherapy approaches targeting prostate tumor progenitor cells using nanohybrids. Int J Cancer. 2015; 137:2492–2503.
48. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008; 14:1310–1316.
49. Baker J, Ajani J, Scotte F, Winther D, Martin M, Aapro MS, et al. Docetaxel-related side effects and their management. Eur J Oncol Nurs. 2009; 13:49–59.
50. Sultana S, Khan MR, Kumar M, Kumar S, Ali M. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target. 2013; 21:107–125.
51. Farrell D, Ptak K, Panaro NJ, Grodzinski P. Nanotechnology-based cancer therapeutics--promise and challenge--lessons learned through the NCI Alliance for Nanotechnology in Cancer. Pharm Res. 2011; 28:273–278.
52. Kulhari H, Pooja D, Shrivastava S, Telukutala SR, Barui AK, Patra CR, et al. Cyclic-RGDfK peptide conjugated succinoyl-TPGS nanomicelles for targeted delivery of docetaxel to integrin receptor over-expressing angiogenic tumours. Nanomedicine. 2015; 11:1511–1520.
53. Shen S, Wang S, Zheng R, Zhu X, Jiang X, Fu D, et al. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials. 2015; 39:67–74.
54. Li M, Lin F, Lin Y, Peng W. Extracellular polysaccharide from Bordetella species reduces high glucose-induced macrophage apoptosis via regulating interaction between caveolin-1 and TLR4. Biochem Biophys Res Commun. 2015; 466:748–754.
55. Axiak-Bechtel SM, Upendran A, Lattimer JC, Kelsey J, Cutler CS, Selting KA, et al. Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer. Int J Nanomedicine. 2014; 9:5001–5011.
56. Kroon J, Buijs JT, van der Horst G, Cheung H, van der Mark M, van Bloois L, et al. Liposomal delivery of dexamethasone attenuates prostate cancer bone metastatic tumor growth in vivo. Prostate. 2015; 75:815–824.
57. Gary-Bobo M, Nirde P, Jeanjean A, Morere A, Garcia M. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Med Chem. 2007; 14:2945–2953.
58. Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol. 2003; 4:202–212.
59. Grubb JH, Vogler C, Sly WS. New strategies for enzyme replacement therapy for lysosomal storage diseases. Rejuvenation Res. 2010; 13:229–236.
60. Vaillant O, El Cheikh K, Warther D, Brevet D, Maynadier M, Bouffard E, et al. Mannose-6-phosphate receptor: a target for theranostics of prostate cancer. Angew Chem Int Ed Engl. 2015; 54:5952–5956.
61. Chueh AC, Tse JW, Togel L, Mariadason JM. Mechanisms of histone deacetylase inhibitor-regulated gene expression in cancer cells. Antioxid Redox Signal. 2015; 23:66–84.
62. Arts J, King P, Marien A, Floren W, Belien A, Janssen L, et al. JNJ-26481585, a novel "second-generation" oral histone deacetylase inhibitor, shows broad-spectrum preclinical anti-tumoral activity. Clin Cancer Res. 2009; 15:6841–6851.
63. Wang EC, Min Y, Palm RC, Fiordalisi JJ, Wagner KT, Hyder N, et al. Nanoparticle formulations of histone deacetylase inhibitors for effective chemoradiotherapy in solid tumors. Biomaterials. 2015; 51:208–215.
64. Lee JY, Kim JS, Cho HJ, Kim DD. Poly(styrene)-b-poly(DL-lactide) copolymer-based nanoparticles for anticancer drug delivery. Int J Nanomedicine. 2014; 9:2803–2813.
65. Yang Q, Yang Y, Li L, Sun W, Zhu X, Huang Y. Polymeric nano-medicine for tumor-targeted combination therapy to elicit synergistic genotoxicity against prostate cancer. ACS Appl Mater Interfaces. 2015; 7:6661–6673.
66. Taneja SS. Imaging in the diagnosis and management of prostate cancer. Rev Urol. 2004; 6:101–113.
67. Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013; 9:1533–1545.
68. Tse BW, Cowin GJ, Soekmadji C, Jovanovic L, Vasireddy RS, Ling MT, et al. PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine (Lond). 2015; 10:375–386.
69. Brazhnik K, Sokolova Z, Baryshnikova M, Bilan R, Efimov A, Nabiev I, et al. Quantum dot-based lab-on-a-bead system for multiplexed detection of free and total prostate-specific antigens in clinical human serum samples. Nanomedicine. 2015; 11:1065–1075.
70. Taurin S, Nehoff H, van Aswegen T, Rosengren RJ, Greish K. A novel role for raloxifene nanomicelles in management of castrate resistant prostate cancer. Biomed Res Int. 2014; 2014:323594.
71. Pritchard T, Rosengren RJ, Greish K, Taurin S. Raloxifene nanomicelles reduce the growth of castrate-resistant prostate cancer. J Drug Target. 2015; Sep. 16. 1. [Epub]. DOI: 10.3109/1061186X.2015.1086360.
72. Wolfe T, Chatterjee D, Lee J, Grant JD, Bhattarai S, Tailor R, et al. Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo. Nanomedicine. 2015; 11:1277–1283.
73. Yan J, Wang Y, Zhang X, Liu S, Tian C, Wang H. Targeted nanomedicine for prostate cancer therapy: docetaxel and curcumin co-encapsulated lipid-polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv. 2015; Jul. 27. 1. [Epub]. DOI: 10.3109/10717544.2015.1069423.
74. Guang Liu W, De Yao K. Chitosan and its derivatives--a promising non-viral vector for gene transfection. J Control Release. 2002; 83:1–11.
75. Shu XZ, Zhu KJ. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur J Pharm Biopharm. 2002; 54:235–243.
76. Mohandas A, Snima KS, Jayakumar R, Lakshmanan VK. Chitosan based AGR2 siRNA nanoparticle delivery system for prostate cancer cells. J Chitin Chitosan Sci. 2013; 1:161–165.
77. Chen B, Pan R, Askhatova D, Chen P. Effective small interfering RNA delivery in vitro via a new stearylated cationic peptide. Int J Nanomedicine. 2015; 10:3303–3314.
78. Feng S, Agoulnik IU, Truong A, Li Z, Creighton CJ, Kaftanovskaya EM, et al. Suppression of relaxin receptor RXFP1 decreases prostate cancer growth and metastasis. Endocr Relat Cancer. 2010; 17:1021–1033.
79. Liu X, Liu C, Chen C, Bentobji M, Cheillan FA, Piana JT, et al. Targeted delivery of Dicer-substrate siRNAs using a dual targeting peptide decorated dendrimer delivery system. Nanomedicine. 2014; 10:1627–1636.
80. Hwang I, Jung SI, Hwang EC, Song SH, Lee HS, Kim SO, et al. Expression and localization of aquaporins in benign prostate hyperplasia and prostate cancer. Chonnam Med J. 2012; 48:174–178.
81. Cho JK, Song HJ, Song HC, Kim KJ, Lee YG. Application of image-guided radiation therapy (IGRT) with gold markers in prostate cancer. Chonnam Med J. 2009; 45:182–187.
82. Chung HS, Yun BH, Ki HC, Na SW, Hwang EC, Im CM, et al. Extraperitoneal laparoscopic radical prostatectomy: clinical experience and learning curve with 103 cases. Chonnam Med J. 2010; 46:170–176.
Full Text Links
  • ICU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr