1. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic abdominal choroidal vasculopathy (IPCV). Retina. 1990; 10:1–8.
2. Ciardella AP, Donsoff IM, Huang SJ, et al. Polypoidal choroidal vasculopathy. Surv Ophthalmol. 2004; 49:25–37.
Article
3. Lee JW, Kim IT. Epidemiologic and clinical characteristics of abdominal choroidal vasculopathy in Korean patients. J Korean Ophthalmol Soc. 2007; 48:63–74.
4. Wong CW, Yanagi Y, Lee WK, et al. Age-related macular abdominal and polypoidal choroidal vasculopathy in Asians. Prog Retin Eye Res. 2016; 53:107–39.
5. Koh A, Lee WK, Chen LJ, et al. EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina. 2012; 32:1453–64.
6. Yamamoto A, Okada AA, Kano M, et al. One-year results of abdominal aflibercept for polypoidal choroidal vasculopathy. Ophthalmology. 2015; 122:1866–72.
7. Oishi A, Tsujikawa A, Yamashiro K, et al. One-year result of abdominal treatment on age-related macular degeneration and abdominal factors for visual outcome. Am J Ophthalmol. 2015; 159:853–60.e1.
8. Introini U, Casalino G, Triolo G, et al. Stereotactic radiotherapy for polypoidal choroidal vasculopathy: a pilot study. Ophthalmologica. 2015; 233:82–8.
Article
9. Inoue M, Yamane S, Taoka R, et al. Aflibercept for polypoidal abdominal vasculopathy: as needed versus fixed interval dosing. Retina. 2016; 36:1527–34.
10. Sasahara M, Tsujikawa A, Musashi K, et al. Polypoidal choroidal vasculopathy with choroidal vascular hyperpermeability. Am J Ophthalmol. 2006; 142:601–7.
Article
11. Jirarattanasopa P, Ooto S, Nakata I, et al. Choroidal thickness, abdominal hyperpermeability, and complement factor H in age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2012; 53:3663–72.
12. Yuzawa M, Mori R, Kawamura A. The origins of polypoidal abdominal vasculopathy. Br J Ophthalmol. 2005; 89:602–7.
13. Koizumi H, Yamagishi T, Yamazaki T, Kinoshita S. Relationship between clinical characteristics of polypoidal choroidal abdominal and choroidal vascular hyperpermeability. Am J Ophthalmol. 2013; 155:305–13.e1.
14. Gallego-Pinazo R, Dolz-Marco R, Gómez-Ulla F, et al. Pachychoroid diseases of the macula. Med Hypothesis Discov Innov Ophthalmol. 2014; 3:111–5.
15. Kuroda S, Ikuno Y, Yasuno Y, et al. Choroidal thickness in central serous chorioretinopathy. Retina. 2013; 33:302–8.
Article
16. Pang CE, Freund KB. Pachychoroid neovasculopathy. Retina. 2015; 35:1–9.
Article
17. Warrow DJ, Hoang QV, Freund KB. Pachychoroid pigment epitheliopathy. Retina. 2013; 33:1659–72.
Article
18. Yang LH, Jonas JB, Wei WB. Optical coherence tomographic abdominal depth imaging of polypoidal choroidal vasculopathy. Retina. 2013; 33:1584–9.
19. Balaratnasingam C, Lee WK, Koizumi H, et al. Polypoidal abdominal vasculopathy: a distinct disease or manifestation of many? Retina. 2016; 36:1–8.
20. Chung SE, Kang SW, Lee JH, Kim YT. Choroidal thickness in abdominal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology. 2011; 118:840–5.
21. Shin JY, Kwon KY, Byeon SH. Association between choroidal thickness and the response to intravitreal ranibizumab injection in age‐ related macular degeneration. Acta Ophthalmol. 2015; 93:524–32.
22. Kang HM, Kwon HJ, Yi JH, et al. Subfoveal choroidal thickness as a potential predictor of visual outcome and treatment response after intravitreal ranibizumab injections for typical exudative age-abdominal macular degeneration. Am J Ophthalmol. 2014; 157:1013–21.
23. Saito M, Kano M, Itagaki K, et al. Switching to intravitreal aflibercept injection for polypoidal choroidal vasculopathy refractory to ranibizumab. Retina. 2014; 34:2192–201.
Article
24. Yang H, Jeon HM, Kim SW, et al. abdominal efficacy of abdominal aflibercept for polypoidal choroidal vasculopathy. J Korean Ophthalmol Soc. 2015; 56:1728–35.
25. Inoue M, Arakawa A, Yamane S, Kadonosono K. abdominal abdominal of intravitreal aflibercept in treatment-naive patients with abdominal choroidal vasculopathy. Retina. 2014; 34:2178–84.
26. Lee KH, Lee SC, Lee CS. Reproducibility of choroidal thickness in normal Korean eyes using two spectral domain optical coherence tomography. J Korean Ophthalmol Soc. 2013; 54:1365–70.
Article
27. Kim SW, Oh J, Kwon SS, et al. Comparison of choroidal thickness among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous abdominal, and polypoidal choroidal vasculopathy. Retina. 2011; 31:1904–11.
28. Yuzawa M. Polypoidal choroidal vasculopathy. Nippon Ganka Gakkai Zasshi. 2012; 116:200–31. discussion 232.
Article
29. Tanaka K, Nakayama T, Mori R, et al. Associations of complement factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2) genotypes with subtypes of polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2011; 52:7441–4.
Article
30. Kawamura A, Yuzawa M, Mori R, et al. Indocyanine green abdominal and optical coherence tomographic findings support abdominal of polypoidal choroidal vasculopathy into two types. Acta Ophthalmol. 2013; 91:e474–81.
31. Coscas G, Lupidi M, Coscas F, et al. Toward a specific abdominal of polypoidal choroidal vasculopathy: idiopathic disease or subtype of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2015; 56:3187–95.
32. Chung SE, Kang SW, Kim JH, et al. Engorgement of vortex vein and polypoidal choroidal vasculopathy. Retina. 2013; 33:834–40.
Article