Korean J Urol.  2015 Oct;56(10):680-688. 10.4111/kju.2015.56.10.680.

Current status of flexible ureteroscopy in urology

Affiliations
  • 1Department of Urology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea. kmoretry@daum.net

Abstract

Retrograde intrarenal surgery (RIRS) is being performed for the surgical management of upper urinary tract pathology. With the development of surgical instruments with improved deflection mechanisms, visuality, and durability, the role of RIRS has expanded to the treatment of urinary calculi located in the upper urinary tract, which compensates for the shortcomings of shock wave lithotripsy and percutaneous nephrolithotomy. RIRS can be considered a conservative treatment of upper urinary tract urothelial cancer (UTUC) or for postoperative surveillance after radical treatment of UTUC under an intensive surveillance program. RIRS has a steep learning curve and various surgical techniques can be used. The choice of instruments during RIRS should be based on increased surgical efficiency, decreased complications, and improved cost-benefit ratio.

Keyword

Laser lithotripsy; Surgical equipment; Transitional cell carcinoma; Urolithiasis

MeSH Terms

Carcinoma, Transitional Cell/surgery
Humans
Lithotripsy, Laser/methods
Perioperative Care/methods
Ureteroscopy/*methods/trends
Urolithiasis/surgery
Urologic Neoplasms/surgery

Cited by  2 articles

Real-time simultaneous endoscopic combined intrarenal surgery with intermediate-supine position: Washout mechanism and transport technique
Hae Do Jung, Jong Chan Kim, Hyun Kyu Ahn, Joon Ho Kwon, Kichang Han, Woong Kyu Han, Man-Deuk Kim, Joo Yong Lee
Investig Clin Urol. 2018;59(5):348-354.    doi: 10.4111/icu.2018.59.5.348.

In vitro, in vivo, and clinical tests of a novel flexible ureteroscope for the diagnosis and treatment of kidney and ureteral diseases
Dai Hee Kim, Jung Hyun Shin, Se Young Choi, Dalsan You, Choung-Soo Kim, Hyung Keun Park
Investig Clin Urol. 2018;59(5):328-334.    doi: 10.4111/icu.2018.59.5.328.


Reference

1. Marshall VF. Fiber optics in urology. J Urol. 1964; 91:110–114.
2. Takagi T, Go T, Takayasu H, Aso Y. Fiberoptic pyeloureteroscope. Surgery. 1971; 70:661–663.
3. Bush IM, Goldberg E, Javadpour N, Chakrobortty H, Morelli F. Ureteroscopy and renoscopy: a preliminary report. Chic Med Sch Q. 1970; 30:46–49.
4. Abdel-Razzak OM, Bagley DH. Clinical experience with flexible ureteropyeloscopy. J Urol. 1992; 148:1788–1792.
5. Bagley DH. Intrarenal access with the flexible ureteropyeloscope: effects of active and passive tip deflection. J Endourol. 1993; 7:221–224.
6. Johnson DE, Cromeens DM, Price RE. Use of the holmium:YAG laser in urology. Lasers Surg Med. 1992; 12:353–363.
7. Albert P. The holmium:YAG laser: applications in urology. Clin Laser Mon. 1993; 11:39–41.
8. Bagley D, Erhard M. Use of the holmium laser in the upper urinary tract. Tech Urol. 1995; 1:25–30.
9. Conlin MJ, Marberger M, Bagley DH. Ureteroscopy: development and instrumentation. Urol Clin North Am. 1997; 24:25–42.
10. Shah K, Monga M, Knudsen B. Prospective randomized trial comparing 2 flexible digital ureteroscopes: ACMI/Olympus invisio DUR-D and Olympus URF-V. Urology. 2015; 85:1267–1271.
11. Multescu R, Geavlete B, Georgescu D, Geavlete P. Improved durability of flex-Xc digital flexible ureteroscope: how long can you expect it to last? Urology. 2014; 84:32–35.
12. Traxer O, Geavlete B, de Medina SG, Sibony M, Al-Qahtani SM. Narrow-band imaging digital flexible ureteroscopy in detection of upper urinary tract transitional-cell carcinoma: initial experience. J Endourol. 2011; 25:19–23.
13. Haberman K, Ortiz-Alvarado O, Chotikawanich E, Monga M. A dual-channel flexible ureteroscope: evaluation of deflection, flow, illumination, and optics. J Endourol. 2011; 25:1411–1414.
14. Türk C, Knoll T, Petrik A, Sarica K, Skolarikos A, Straub M, et al. Guidelines on urolithiasis [Internet]. Anheim (NL): European Association of Urology;c2014. cited 2015 Jan 5. Available from: http://uroweb.org/wp-content/uploads/22-Urolithiasis_LR.pdf.
15. Argyropoulos AN, Tolley DA. Evaluation of outcome following lithotripsy. Curr Opin Urol. 2010; 20:154–158.
16. Srisubat A, Potisat S, Lojanapiwat B, Setthawong V, Laopaiboon M. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database Syst Rev. 2009; (4):CD007044.
17. Sahinkanat T, Ekerbicer H, Onal B, Tansu N, Resim S, Citgez S, et al. Evaluation of the effects of relationships between main spatial lower pole calyceal anatomic factors on the success of shock-wave lithotripsy in patients with lower pole kidney stones. Urology. 2008; 71:801–805.
18. Danuser H, Muller R, Descoeudres B, Dobry E, Studer UE. Extracorporeal shock wave lithotripsy of lower calyx calculi: how much is treatment outcome influenced by the anatomy of the collecting system? Eur Urol. 2007; 52:539–546.
19. Pearle MS, Lingeman JE, Leveillee R, Kuo R, Preminger GM, Nadler RB, et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol. 2005; 173:2005–2009.
20. Albanis S, Ather HM, Papatsoris AG, Masood J, Staios D, Sheikh T, et al. Inversion, hydration and diuresis during extracorporeal shock wave lithotripsy: does it improve the stone-free rate for lower pole stone clearance? Urol Int. 2009; 83:211–216.
21. Kosar A, Ozturk A, Serel TA, Akkus S, Unal OS. Effect of vibration massage therapy after extracorporeal shockwave lithotripsy in patients with lower caliceal stones. J Endourol. 1999; 13:705–707.
22. Aboumarzouk OM, Monga M, Kata SG, Traxer O, Somani BK. Flexible ureteroscopy and laser lithotripsy for stones >2 cm: a systematic review and meta-analysis. J Endourol. 2012; 26:1257–1263.
23. Handa RK, Bailey MR, Paun M, Gao S, Connors BA, Willis LR, et al. Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. BJU Int. 2009; 103:1270–1274.
24. Olvera-Posada D, Tailly T, Alenezi H, Violette PD, Nott L, Denstedt JD, et al. Risk Factors for Postoperative Complications of Percutaneous Nephrolithotomy at a Tertiary Referral Center. J Urol. 2015; 07. 02. [Epub]. DOI: 10.1016/j.juro.2015.06.095.
25. Kyriazis I, Panagopoulos V, Kallidonis P, Ozsoy M, Vasilas M, Liatsikos E. Complications in percutaneous nephrolithotomy. World J Urol. 2015; 33:1069–1077.
26. Chubak B, Stern JM. An unusual presentation of colon perforation following percutaneous nephrolithotomy. Can Urol Assoc J. 2014; 8:E862–E866.
27. Keeley FX Jr, Tilling K, Elves A, Menezes P, Wills M, Rao N, et al. Preliminary results of a randomized controlled trial of prophylactic shock wave lithotripsy for small asymptomatic renal calyceal stones. BJU Int. 2001; 87:1–8.
28. Cho SY, Choo MS, Jung JH, Jeong CW, Oh S, Lee SB, et al. Cumulative sum analysis for experiences of a single-session retrograde intrarenal stone surgery and analysis of predictors for stone-free status. PLoS One. 2014; 9:e84878.
29. Jung GH, Jung JH, Ahn TS, Lee JS, Cho SY, Jeong CW, et al. Comparison of retrograde intrarenal surgery versus a single-session percutaneous nephrolithotomy for lower-pole stones with a diameter of 15 to 30 mm: A propensity score-matching study. Korean J Urol. 2015; 56:525–532.
30. Wilhelm K, Hein S, Adams F, Schlager D, Miernik A, Schoenthaler M. Ultra-mini PCNL versus flexible ureteroscopy: a matched analysis of analgesic consumption and treatment-related patient satisfaction in patients with renal stones 10-35 mm. World J Urol. 2015; 05. 14. DOI: 10.1007/s00345-015-1585-5. [Epub].
31. Alkan E, Avci E, Ozkanli AO, Acar O, Balbay MD. Same-session bilateral retrograde intrarenal surgery for upper urinary system stones: safety and efficacy. J Endourol. 2014; 28:757–762.
32. Goldberg H, Holland R, Tal R, Lask DM, Livne PM, Lifshitz DA. The impact of retrograde intrarenal surgery for asymptomatic renal stones in patients undergoing ureteroscopy for a symptomatic ureteral stone. J Endourol. 2013; 27:970–973.
33. Zhang W, Zhou T, Wu T, Gao X, Peng Y, Xu C, et al. Retrograde intrarenal surgery versus percutaneous nephrolithotomy versus extracorporeal shockwave lithotripsy for treatment of lower pole renal stones: a meta-analysis and systematic review. J Endourol. 2015; 29:745–759.
34. Ozturk U, Sener NC, Goktug HN, Nalbant I, Gucuk A, Imamoglu MA. Comparison of percutaneous nephrolithotomy, shock wave lithotripsy, and retrograde intrarenal surgery for lower pole renal calculi 10-20 mm. Urol Int. 2013; 91:345–349.
35. Bozkurt OF, Resorlu B, Yildiz Y, Can CE, Unsal A. Retrograde intrarenal surgery versus percutaneous nephrolithotomy in the management of lower-pole renal stones with a diameter of 15 to 20 mm. J Endourol. 2011; 25:1131–1135.
36. Turna B, Stein RJ, Smaldone MC, Santos BR, Kefer JC, Jackman SV, et al. Safety and efficacy of flexible ureterorenoscopy and holmium:YAG lithotripsy for intrarenal stones in anticoagulated cases. J Urol. 2008; 179:1415–1419.
37. Watterson JD, Girvan AR, Cook AJ, Beiko DT, Nott L, Auge BK, et al. Safety and efficacy of holmium: YAG laser lithotripsy in patients with bleeding diatheses. J Urol. 2002; 168:442–445.
38. Aboumarzouk OM, Somani BK, Monga M. Flexible ureteroscopy and holmium:YAG laser lithotripsy for stone disease in patients with bleeding diathesis: a systematic review of the literature. Int Braz J Urol. 2012; 38:298–305.
39. Leavitt DA, Theckumparampil N, Moreira DM, Elsamra SE, Morganstern B, Hoenig DM, et al. Percutaneous nephrolithotomy during uninterrupted aspirin therapy in high-cardiovascular risk patients: preliminary report. Urology. 2014; 84:1034–1038.
40. Leavitt DA, Theckumparampil N, Moreira DM, Elsamra SE, Waingankar N, Hoenig DM, et al. Continuing aspirin therapy during percutaneous nephrolithotomy: unsafe or under-utilized? J Endourol. 2014; 28:1399–1403.
41. Zhong W, Yang B, He F, Wang L, Swami S, Zeng G. Surgical management of urolithiasis in patients after urinary diversion. PLoS One. 2014; 9:e111371.
42. Stuurman RE, Al-Qahtani SM, Cornu JN, Traxer O. Antegrade percutaneous flexible endoscopic approach for the management of urinary diversion-associated complications. J Endourol. 2013; 27:1330–1334.
43. Tasca A, Zattoni F. The case for a percutaneous approach to transitional cell carcinoma of the renal pelvis. J Urol. 1990; 143:902–904.
44. Woodhouse CR, Kellett MJ, Bloom HJ. Percutaneous renal surgery and local radiotherapy in the management of renal pelvic transitional cell carcinoma. Br J Urol. 1986; 58:245–249.
45. Orihuela E, Smith AD. Percutaneous treatment of transitional cell carcinoma of the upper urinary tract. Urol Clin North Am. 1988; 15:425–431.
46. Cornu JN, Roupret M, Carpentier X, Geavlete B, de Medina SG, Cussenot O, et al. Oncologic control obtained after exclusive flexible ureteroscopic management of upper urinary tract urothelial cell carcinoma. World J Urol. 2010; 28:151–156.
47. Bagley DH, Grasso M 3rd. Ureteroscopic laser treatment of upper urinary tract neoplasms. World J Urol. 2010; 28:143–149.
48. Stewart GD, Bariol SV, Grigor KM, Tolley DA, McNeill SA. A comparison of the pathology of transitional cell carcinoma of the bladder and upper urinary tract. BJU Int. 2005; 95:791–793.
49. Yamany T, van Batavia J, Ahn J, Shapiro E, Gupta M. Ureterorenoscopy for upper tract urothelial carcinoma: how often are we missing lesions? Urology. 2015; 85:311–315.
50. Resorlu B, Unsal A, Gulec H, Oztuna D. A new scoring system for predicting stone-free rate after retrograde intrarenal surgery: the "resorlu-unsal stone score". Urology. 2012; 80:512–518.
51. Jung JW, Lee BK, Park YH, Lee S, Jeong SJ, Lee SE, et al. Modified Seoul National University Renal Stone Complexity score for retrograde intrarenal surgery. Urolithiasis. 2014; 42:335–340.
52. Park J, Kang M, Jeong CW, Oh S, Lee JW, Lee SB, et al. External validation and evaluation of reliability and validity of the modified seoul national university renal stone complexity scoring system to predict stone-free status after retrograde intrarenal surgery. J Endourol. 2015; 29:888–893.
53. De S, Autorino R, Kim FJ, Zargar H, Laydner H, Balsamo R, et al. Percutaneous nephrolithotomy versus retrograde intrarenal surgery: a systematic review and meta-analysis. Eur Urol. 2015; 67:125–137.
54. Chou YH, Li CC, Hsu H, Chang WC, Liu CC, Li WM, et al. Renal function in patients with urinary stones of varying compositions. Kaohsiung J Med Sci. 2011; 27:264–267.
55. Giusti G, Proietti S, Cindolo L, Peschechera R, Sortino G, Berardinelli F, et al. Is retrograde intrarenal surgery a viable treatment option for renal stones in patients with solitary kidney? World J Urol. 2015; 33:309–314.
56. Piao S, Park J, Son H, Jeong H, Cho SY. Evaluation of renal function in patients with a main renal stone larger than 1 cm and perioperative renal functional change in minimally invasive renal stone surgery: a prospective, observational study. World J Urol. 2015; 07. 31. DOI: 10.1007/s00345-015-1653-x. [Epub].
57. Netsch C, Knipper S, Bach T, Herrmann TR, Gross AJ. Impact of preoperative ureteral stenting on stone-free rates of ureteroscopy for nephroureterolithiasis: a matched-paired analysis of 286 patients. Urology. 2012; 80:1214–1219.
58. Chu L, Farris CA, Corcoran AT, Averch TD. Preoperative stent placement decreases cost of ureteroscopy. Urology. 2011; 78:309–313.
59. Chu L, Sternberg KM, Averch TD. Preoperative stenting decreases operative time and reoperative rates of ureteroscopy. J Endourol. 2011; 25:751–754.
60. Lange D, Bidnur S, Hoag N, Chew BH. Ureteral stent-associated complications--where we are and where we are going. Nat Rev Urol. 2015; 12:17–25.
61. Traxer O, Wendt-Nordahl G, Sodha H, Rassweiler J, Meretyk S, Tefekli A, et al. Differences in renal stone treatment and outcomes for patients treated either with or without the support of a ureteral access sheath: The Clinical Research Office of the Endourological Society Ureteroscopy Global Study. World J Urol. 2015; 05. 14. [Epub]. DOI: 10.1007/s00345-015-1582-8.
62. Berquet G, Prunel P, Verhoest G, Mathieu R, Bensalah K. The use of a ureteral access sheath does not improve stone-free rate after ureteroscopy for upper urinary tract stones. World J Urol. 2014; 32:229–232.
63. Ng YH, Somani BK, Dennison A, Kata SG, Nabi G, Brown S. Irrigant flow and intrarenal pressure during flexible ureteroscopy: the effect of different access sheaths, working channel instruments, and hydrostatic pressure. J Endourol. 2010; 24:1915–1920.
64. Auge BK, Pietrow PK, Lallas CD, Raj GV, Santa-Cruz RW, Preminger GM. Ureteral access sheath provides protection against elevated renal pressures during routine flexible ureteroscopic stone manipulation. J Endourol. 2004; 18:33–36.
65. Traxer O, Thomas A. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol. 2013; 189:580–584.
66. Sarkissian C, Noble M, Li J, Monga M. Patient decision making for asymptomatic renal calculi: balancing benefit and risk. Urology. 2013; 81:236–240.
67. Mogilevkin Y, Sofer M, Margel D, Greenstein A, Lifshitz D. Predicting an effective ureteral access sheath insertion: a bicenter prospective study. J Endourol. 2014; 28:1414–1417.
68. Vassar GJ, Chan KF, Teichman JM, Glickman RD, Weintraub ST, Pfefer TJ, et al. Holmium: YAG lithotripsy: photothermal mechanism. J Endourol. 1999; 13:181–190.
69. Chan KF, Vassar GJ, Pfefer TJ, Teichman JM, Glickman RD, Weintraub ST, et al. Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi. Lasers Surg Med. 1999; 25:22–37.
70. Prabhakar M. Retrograde ureteroscopic intrarenal surgery for large (1.6-3.5 cm) upper ureteric/renal calculus. Indian J Urol. 2010; 26:46–49.
71. Kuo RL, Aslan P, Zhong P, Preminger GM. Impact of holmium laser settings and fiber diameter on stone fragmentation and endoscope deflection. J Endourol. 1998; 12:523–527.
72. Knudsen BE, Pedro R, Hinck B, Monga M. Durability of reusable holmium:YAG laser fibers: a multicenter study. J Urol. 2011; 185:160–163.
73. Korman E, Hendlin K, Monga M. Small-diameter nitinol stone baskets: radial dilation force and dynamics of opening. J Endourol. 2011; 25:1537–1540.
74. Hamamoto S, Yasui T, Okada A, Koiwa S, Taguchi K, Itoh Y, et al. Efficacy of endoscopic combined intrarenal surgery in the prone split-leg position for staghorn calculi. J Endourol. 2015; 29:19–24.
75. Cracco CM, Scoffone CM. ECIRS (Endoscopic Combined Intrarenal Surgery) in the Galdakao-modified supine Valdivia position: a new life for percutaneous surgery? World J Urol. 2011; 29:821–827.
76. Traxer O, Letendre J. Extracorporeal lithotripsy endoscopically controlled by ureterorenoscopy (LECURS): a new concept for the treatment of kidney stones-first clinical experience using digital ureterorenoscopes. World J Urol. 2014; 32:715–721.
77. Palmero JL, Miralles J, Garau C, Nuno de, Amoros A, Benedicto A. Retrograde intrarenal surgery (RIRS) in the treatment of calyceal diverticulum with lithiasis. Arch Esp Urol. 2014; 67:331–336.
78. Desai MM, Aron M, Gill IS, Pascal-Haber G, Ukimura O, Kaouk JH, et al. Flexible robotic retrograde renoscopy: description of novel robotic device and preliminary laboratory experience. Urology. 2008; 72:42–46.
79. Saglam R, Muslumanoglu AY, Tokatlı Z, Caskurlu T, Sarica K, Tasci Aİ, et al. A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1-2b). Eur Urol. 2014; 66:1092–1100.
Full Text Links
  • KJU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr