1. Quigley HA, Katz J, Derick RJ, et al. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992; 99:19–28.
Article
2. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991; 109:77–83.
Article
3. Zeyen TG, Caprioli J. Progression of disc and field damage in early glaucoma. Arch Ophthalmol. 1993; 111:62–5.
Article
4. Sihota R, Sony P, Gupta V, et al. Comparing glaucomatous optic neuropathy in primary open angle and chronic primary angle clo-sure glaucoma eyes by optical coherence tomography. Ophthalmic Physiol Opt. 2005; 25:408–15.
Article
5. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989; 107:453–64.
Article
6. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990; 300:5–25.
Article
7. Zeimer R, Asrani S, Zou S, et al. Quantitative detection of glau-comatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology. 1998; 105:224–31.
8. Burgansky-Eliash Z, Wollstein G, Chu T, et al. Optical coherence tomography machine learning classifiers for glaucoma detection: A preliminary study. Invest Ophthalmol Vis Sci. 2005; 46:4147–52.
Article
9. Huang ML, Chen HY. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci. 2005; 46:4121–9.
Article
10. Manassakorn A, Nouri-Mahdavi K, Caprioli J. Comparison of reti-nal nerve fiber layer thickness and optic disk algorithms with opti-cal coherence tomography to detect glaucoma. Am J Ophthalmol. 2006; 141:105–15.
Article
11. Medeiros FA, Zangwill LM, Bowd C, et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measure-ments for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005; 139:44–55.
Article
12. Parikh RS, Parikh S, Sekhar GC, et al. Diagnostic capability of op-tical coherence tomography (stratus OCT 3) in early glaucoma. Ophthalmology. 2007; 114:2238–43.
Article
13. Lalezary M, Medeiros FA, Weinreb RN, et al. Baseline optical co-herence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol. 2006; 142:576–82.
Article
14. Garway-Heath DF, Caprioli J, Fitzke FW, Hitchings RA. Scaling the hill of vision: the physiological relationship between light sen-sitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci. 2000; 41:1774–82.
15. Parikh RS, Parikh SR, Thomas R. Diagnostic capability of macular parameters of Stratus OCT 3 in detection of early glaucoma. Br J Ophthalmol. 2010; 94:197–201.
Article
16. Wollstein G, Ishikawa H, Wang J, et al. Comparison of three opti-cal coherence tomography scanning areas for detection of glau-comatous damage. Am J Ophthalmol. 2005; 139:39–43.
Article
17. Nakatani Y, Higashide T, Ohkubo S, et al. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coher-ence tomography. J Glaucoma. 2011; 20:252–9.
Article
18. Na JH, Sung KR, Baek S, et al. Macular and retinal nerve fiber lay-er thickness: which is more helpful in the diagnosis of glaucoma. Invest Ophthalmol Vis Sci. 2011; 52:8094–101.
Article
19. Leung CK, Chan WM, Yung WH, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005; 112:391–400.
20. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci. 2009; 50:3432–7.
Article
21. Han IC, Jaffe GJ. Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology. 2010; 117:1177–1189.e4.
Article
22. Asrani S, Challa P, Herndon L, et al. Correlation among retinal thickness, optic disc, and visual field in glaucoma patients and sus-pects: a pilot study. J Glaucoma. 2003; 12:119–28.
Article
23. Greenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol. 2003; 121:41–6.
Article
24. Asrani S, Rosdahl JA, Allingham RR. Novel software strategy for glaucoma diagnosis: asymmetry analysis of retinal thickness. Arch Ophthalmol. 2011; 129:1205–11.
25. Ojima T, Tanabe T, Hangai M, et al. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol. 2007; 51:197–203.
Article
26. Tan O, Li G, Lu AT, et al. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008; 115:949–56.
Article
27. Ishikawa H, Stein DM, Wollstein G, et al. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci. 2005; 46:2012–7.
Article
28. Wagner-Schuman M, Dubis AM, Nordgren RN, et al. Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci. 2011; 52:625–34.
Article
29. Kashani AH, Zimmer-Galler IE, Shah SM, et al. Retinal thickness analysis by race, gender, and age using Stratus OCT. Am J Ophthalmol. 2010; 149:496–502.
Article
30. Ooto S, Hangai M, Sakamoto A, et al. Three-dimensional profile of macular retinal thickness in normal Japanese eyes. Invest Ophthalmol Vis Sci. 2010; 51:465–73.
Article
31. Kim JM, Sung KR, Yoo YC, Kim CY. Point-wise relationships be-tween visual field sensitivity and macular thickness determined by spectral-domain optical coherence tomography. Curr Eye Res. 2013; 38:894–901.
Article
32. Pierro L, Giatsidis SM, Mantovani E, Gagliardi M. Macular thick-ness interoperator and intraoperator reproducibility in healthy eyes using 7 optical coherence tomography instruments. Am J Ophthalmol. 2010; 150:199–204.
Article