1. Comerford JP. Vision evaluation using contrast sensitivity functions. Am J Optom Physiol Opt. 1983. 60:394–398.
2. Campbell FW, Green DG. Optical and retinal factors affecting visual resolution. J Physiol. 1965. 181:576–593.
3. Swanson WH, Cohen JM. Color vision. Ophthalmol Clin North Am. 2003. 16:179–203.
4. Davies N, Morland A. Extent of foveal tritanopia in diabetes mellitus. Br J Ophthalmol. 2003. 87:742–746.
5. Volbrecht VJ, Schneck ME, Adams AJ, et al. Diabetic short-wavelength sensitivity: variations with induced changes in blood glucose level. Invest Ophthalmol Vis Sci. 1994. 35:1243–1246.
6. Thompson DG, Howarth F, Levy IS. Colour blindness, a hazard to diabetics. Lancet. 1978. 1:44.
7. Thompson DG, Howarth F, Taylor H, et al. Defective colour vision in diabetes: a hazard to management. Br Med J. 1979. 1:859–860.
8. Francois J, Verriest G. Acquired dyschromatopsia. Ann Ocul (Paris). 1957. 190:812–859.
9. Cho NC, Poulsen GL, Ver Hoeve JN, Nork TM. Selective loss of S-cones in diabetic retinopathy. Arch Ophthalmol. 2000. 118:1393–1400.
10. Gastaud P, Vola J, Saracco JB, et al. Verriest G. Diabetic dyschromatopsia: pathogenetic hypothesis. Colour Vision Deficiencies VIII. 1987. Dordrecht: Martinus Nijhoff/Dr W. Junk Publishers;387–390.
11. Hood DC, Benimoff NI, Greenstein VC. The response range of the blue-cone pathways: a source of vulnerability to disease. Invest Ophthalmol Vis Sci. 1984. 25:864–867.
12. Mollon JD. Verriest G, editor. What is odd about the short-wavelength mechanism and why is it disproportionately vulnerable to acquired damage? Report of a discussion. Colour Vision Deficiencies VI. 1982. The Hague: Dr W. Junk Publishers;145–149.
13. Farnsworth D. Tritanomalous vision as a threshold function. 1956. New London, Conn: U.S. Naval Medical Research Laboratory, Submarine Base;185–197.
14. Greenstein VC, Hood DC, Campbell CJ. The use of a flash - on - flash paradigm to assess sensitivity changes due to retinal disease. Invest Ophthalmol Vis Sci. 1982. 23:102–112.
15. Nork TM, Millecchia LL, Strickland BD, et al. Selective loss of blue cones and rods in human retinal detachment. Arch Ophthalmol. 1995. 113:1066–1073.
16. Kessel L, Alsing A, Larsen M. Diabetic versus non-diabetic colour vision after cataract surgery. Br J Ophthalmol. 1999. 83:1042–1045.
17. Ayed S, Jeddi A, Kallal Z. Diabetes and color vision disorder detected by the Farnsworth 100 Hue test. Diabetic dyschromatopsia. J Fr Ophtalmol. 1990. 13:506–510.
18. Utku D, Atmaca LS. Farnsworth-Munsell 100-hue test for patients with diabetes mellitus. Ann Ophthalmol. 1992. 24:205–208.
19. Muntoni S, Serra A, Mascia C, Songini M. Dyschromatopsia in diabetes mellitus and its relation to metabolic control. Diabetes Care. 1982. 5:375–378.
20. Trick GL, Burde RM, Gordon MO, et al. The relationship between hue discrimination and contrast sensitivity deficits in patients with diabetes mellitus. Ophthalmology. 1988. 95:693–698.
21. Roy MS, Gunkel RD, Podgor MJ. Color vision defects in early diabetic retinopathy. Arch Ophthalmol. 1986. 104:225–228.
22. Hardy KJ, Lipton J, Scase MO, et al. Detection of colour vision abnormalities in uncomplicated type 1 diabetic patients with angiographically normal retinas. Br J Ophthalmol. 1992. 76:461–464.
23. Green FD, Ghafour IM, Allan D, et al. Colour vision of diabetics. Br J Ophthalmol. 1985. 69:533–536.
24. Bresnick GH, Condit RS, Palta M, et al. Association of hue discrimination loss and diabetic retinopathy. Arch Ophthalmol. 1985. 103:1317–1324.
25. Andley U. Albert DM, Jakobiec FA, editors. Photooxidative stress. Principles and Practice of Ophthalmology: Clinical Practice. 1994. Philadelphia: WB Saunders;417–436.
26. Lanum J. The damaging effects of light on the retina. Empirical findings, theoretical and practical implications. Surv Ophthalmol. 1978. 22:221–249.
27. Yoon HM, Jang Y, Kim JS, Ji NC. An ultrastructural study of recovery of photoreceptor layer from visible light-induced damage. J Korean Ophthalmol Soc. 1993. 34:678–686.
28. Ham WT Jr, Mueller HA, Sliney DH. Retinal sensitivity to damage from short wavelength light. Nature. 1976. 260:153–155.
29. Sperling HG, Johnson C, Harwerth RS. Differential spectral photic damage to primate cones. Vision Res. 1980. 20:1117–1125.
30. Lawwill T. Three major pathologic processes caused by light in the primate retina: a search for mechanisms. Trans Am Ophthalmol Soc. 1982. 80:517–579.
31. Ishida M, Sato H, Yanashima K, et al. Improving contrast sensitivity with the UVCY (Hoya) intraocular lens under glare conditions. Folia Ophthalmol Jpn. 1993. 44:399–405.
32. Ham WT Jr, Mueller HA, Ruffolo JJ Jr, et al. Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr Eye Res. 1984. 3:165–174.
33. Ham WT Jr, Ruffolo JJ Jr, Mueller HA, et al. Histologic analysis of photochemical lesions produced in rhesus retina by short-wavelength light. Invest Ophthalmol Vis Sci. 1978. 17:1029–1035.
34. Sparrow JR, Miller AS, Zhou J. Blue light-absorbing intraocular lens and retinal pigment epithelium protection in vitro. J Cataract Refract Surg. 2004. 30:873–878.
35. Yap M. The effect of a yellow filter on contrast sensitivity. Ophthalmic Physiol Opt. 1984. 4:227–232.
36. Kinney JA, Schlichting CL, Neri DF, Kindness SW. Reaction time to spatial frequencies using yellow and luminance-matched neutral goggles. Am J Optom Physiol Opt. 1983. 60:132–138.
37. Kelly SA. Effect of yellow-tinted lenses on brightness. J Opt Soc Am A. 1990. 7:1905–1911.
38. Sivak JG, Bobier WR. Effect of a yellow ocular filter on chromatic aberration: the fish eye as an example. Am J Optom Physiol Opt. 1978. 55:813–817.
39. Wolffsohn JS, Cochrane AL, Khoo H, et al. Contrast is enhanced by yellow lenses because of selective reduction of short-wavelength light. Optom Vis Sci. 2000. 77:73–81.
40. Kuyk TK, Thomas SR. Effect of short wavelength absorbing filters on Farnsworth-Munsell 100 Hue test and hue identification task performance. Optom Vis Sci. 1990. 67:522–531.
41. de Fez D, Luque MJ, Viqueira V. Enhancement of contrast sensitivity and losses of chromatic discrimination with tinted lenses. Optom Vis Sci. 2002. 79:590–597.
42. Early Treatment Diabetic Retinopathy Study Research Group. Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS Report number 12. Ophthalmology. 1991. 98:5 Suppl. 823–833.
43. Della Sala S, Bertoni G, Somazzi L, et al. Impaired contrast sensitivity in diabetic patients with and without retinopathy: a new technique for rapid assessment. Br J Ophthalmol. 1985. 69:136–142.
44. Sokol S, Moskowitz A, Skarf B, et al. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985. 103:51–54.
45. Ghafour IM, Foulds WS, Allan D, McClure E. Contrast sensitivity in diabetic subjects with and without retinopathy. Br J Ophthalmol. 1982. 66:492–495.
46. Trick GL, Burde RM, Gordon MO, et al. The relationship between hue discrimination and contrast sensitivity deficits in patients with diabetes mellitus. Ophthalmology. 1988. 95:693–698.
47. Kim HG, Yoo CS, Huh W. Hue discrimination and contrast sensitivity deficits in diabetic subjects with and without retinopathy. J Korean Ophthalmol Soc. 1991. 32:274–280.
48. Arend O, Remky A, Evans D, et al. Contrast sensitivity loss is coupled with capillary dropout in patients with diabetes. Invest Ophthalmol Vis Sci. 1997. 38:1819–1824.
49. Rodríguez-Galietero A, Montés-Micó R, Muñoz G, Albarrán-Diego C. Blue-light filtering intraocular lens in patients with diabetes: contrast sensitivity and chromatic discrimination. J Cataract Refract Surg. 2005. 31:2088–2092.
50. Mester U, Holz F, Kohnen T, et al. Intraindividual comparison of a blue-light filter on visual function: AF-1 (UY) versus AF-1 (UV) intraocular lens. J Cataract Refract Surg. 2008. 34:608–615.
51. Neumaier-Ammerer B, Felke S, Hagen S, et al. Comparison of visual performance with blue light-filtering and ultraviolet light-filtering intraocular lenses. J Cataract Refract Surg. 2010. 36:2073–2079.
52. Wang H, Wang J, Fan W, Wang W. Comparison of photochromic, yellow, and clear intraocular lenses in human eyes under photopic and mesopic lighting conditions. J Cataract Refract Surg. 2010. 36:2080–2086.
53. Ao M, Chen X, Huang C, et al. Color discrimination by patients with different types of light-filtering intraocular lenses. J Cataract Refract Surg. 2010. 36:389–395.
54. Ernest PH. Light-transmission-spectrum comparison of foldable intraocular lenses. J Cataract Refract Surg. 2004. 30:1755–1758.
55. van den Berg TJ. Light scattering by donor lenses as a function of depth and wavelength. Invest Ophthalmol Vis Sci. 1997. 38:1321–1332.