J Korean Ophthalmol Soc.  2010 Jan;51(1):55-62.

Effect of Cataract Extraction on Visual Field Test in Patients with Glaucoma

Affiliations
  • 1Department of Ophthalmologic, National Health Insurance Corporation Ilsan Hospital, Goyang, Korea. malgnnun@freechal.com

Abstract

PURPOSE
To determine the effect of cataract extraction on visual field damage in glaucoma patients with cataracts.
METHODS
Sixty-two eyes of fifty glaucoma patients (primary open-angle glaucoma, angle-closure glaucoma, and normal-tension glaucoma) were divided into three groups according to the MD (mean deviation) value from the Humphrey automatic visual field test. The PSD (pattern standard deviation) values were analyzed before and after the cataract surgery. Additionally, the visual acuity, intraocular pressure and the number of antiglaucomatous agents were compared.
RESULTS
All of the three groups, showed significant improvement in visual acuity. However, there was only a significant decrease in intraocular pressure at three months postoperatively. When comparing the mean MD values of each group, there was a statistically significant difference between the mild defect group and the severe defect group, but no statistically significant difference in the moderate defect group. There was also no statistically significant difference in PSD values in the any of the groups before and after cataract surgeries.
CONCLUSIONS
In glaucoma patients with cataracts, there were no significant differences in PSD values before and after cataract surgery. Additionally, to perform an adequate cataract operation in advanced glaucoma patients without the progression of visual field damage, lowering intraocular pressure and improving visual acuity is helpful.

Keyword

Glaucoma; Pattern standard deviation; Visual field

MeSH Terms

Cataract
Cataract Extraction
Eye
Glaucoma
Glaucoma, Angle-Closure
Glaucoma, Open-Angle
Humans
Intraocular Pressure
Visual Acuity
Visual Field Tests
Visual Fields

Reference

References

1. Quigley HA. Long-term follow-up of laser iridotomy. aberrationsogy. 1981; 88:218–24.
Article
2. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol. 1996; 80:389–93.
Article
3. Tielsch JM, Katz J, Singh K, et al. A population-based evaluation of glaucoma screening: the Baltimore Eye Survey. Am J aberrations. 1991; 134:1102–10.
Article
4. Kim YY, Kim JS, Shin DH, et al. Effect of cataract extraction on blue-on-yellow visual field. Am J Ophthalmol. 2001; 132:217–20.
Article
5. Chen PP, Budenz DL. The effects of cataract extraction on the visual field of eyes with chronic open-angle glaucoma. Am J Ophthalmol. 1998; 125:325–33.
Article
6. Hayashi K, Hayashi H, Nakao F, Hayashi F. Influence of cataract surgery on automated perimetry in patients with glaucoma. Am J Ophthalmol. 2001; 132:41–6.
Article
7. Lam BL, Alward WL, Kolder HE. Effect of cataract on automated perimetry. Ophthalmolgy. 1991; 98:1066–70.
Article
8. Smith SD, Katz J, Quigley HA. Effect of cataract extraction on the results of automated perimetry in glaucoma. Arch aberrations. 1997; 115:1515–9.
Article
9. Rehman Siddiqui MA, Khairy HA, Azuara-Blanco A. Effect of cataract extraction on SITA perimetry in patients with glaucoma. J Glaucoma. 2007; 16:205–8.
Article
10. Anderson DR, Patella VM. Automated static perimetry. St Louis: Mosby;1999. p. 164.
11. Hodapp E, Parrish RK, Anderson DR. Clinical decisions in glaucoma. St. Louis: Mosby;1993. p. 52.
12. Cho CH, Kee CW. Association of retinal nerve fiber layer thickness measured by optical coherence tomography and automatic perimetry. J Korean Ophthalmol Soc. 2002; 43:1032–9.
13. Kim YN, Kang JH, Kim JS, Lee JH. Correlation between retinal nerve fiber layer thickness and visual field in normal tension glaucoma. J Korean Ophthalmol Soc. 2005; 46:1532–9.
14. Kelly DH. Frequency doubling in visual responses. J Opt Soc Am. 1996; 56:1628–33.
Article
15. Kelly DH. Nonlinear visual responses to flickering sinusoidal gratings. J Opt Soc Am. 1981; 71:1051–5.
Article
16. Cheon HC, Jeung WJ, Rho SH. The comparison of the Matrix perimetry and Humphrey standard perimetry in various patients group. J Korean Ophthalmol Soc. 2007; 48:678–85.
17. Susanna R, Nicolela MT, Soriano DS, Carvalho CA. Automated perimetry: A study of the glaucoma hemifield test for detection of early glaucomatous visual field loss. J Glaucoma. 1994; 3:12–6.
18. Johnson CA, Adams AJ, Casson EJ, Brandt JD. Blue on yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol. 1993; 111:645–50.
19. Kim NJ, Lee SM, Park KH, Kim DM. Factors associated with progression of visual field defect in normal tension glaucoma. J Korean Ophthalmol Soc. 2003; 44:1351–5.
20. Bigger JF, Becker B. Cataract and open-angle glaucoma: the effect of cataract extraction on visual fields. Am J Ophthalmol. 1971; 71:335–40.
21. Guthauser U, Flammer J. Quantifying visual field damage caused by cataract. Am J Ophthalmol. 1988; 106:480–4.
Article
22. Budentz DL, Feuer WJ, Anderson DR. The effect of simulated cataract on the glaucomatous visual field. Ophthalmology. 1993; 100:511–7.
Article
23. Stewart WC, Rogers GM, Crinkley CM, Carlson AN. Effect of cataract extraction on automated fields in chronic open-angle glaucoma. Arch Ophthalmol. 1995; 113:875–9.
Article
24. Budenz DL, Feuer WJ, Anderson DR. The effect of simulated cataract on the glaucomatous visual field. Ophthalmology. 1993; 100:511–7.
Article
25. Carrillo MM, Artes PH, Nicolela MT, et al. Effect of cataract extraction on the visual fields of patients with glaucoma. Arch Ophthalmol. 2005; 123:929–32.
Article
26. Bengtsson B, Olsson J, Heijl A, Rootzén H. A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scand. 1997; 75:368–75.
Article
27. Bengtsson B, Heijl A. Comparing significance and magnitude of glaucomatous visual field defects using the SITA and full threshold strategies. Acta Ophthalmol Scand. 1999; 77:143–6.
Article
28. Heijl A, Bengtsson B, Patella VM. Glaucoma follow-up when converting from long to short perimetric threshold tests. Arch Ophthalmol. 2000; 118:489–93.
Article
29. Sekhar GC, Naduvilath TJ, Lakkai M, et al. Sensitivity of swedish interactive threshold algorithm compared with standard full threshold algorithm in Humphrey visual field testing. aberrationsogy. 2000; 107:1303–8.
Article
30. Bengtsson B, Heijl A, Olsson J. Evaluation of a new threshold visual field strategy, SITA, in normal subjects. Acta Ophthalmol Scand. 1988; 76:165–9.
Article
31. Shim JC, Kim CY, Hong YJ. Comparison of SITA-standard with full threshold strategy of Humphrey field analyzer in glaucoma. J Korean Ophthalmol Soc. 2002; 43:2179–85.
32. Altmeyer M, Wirbelauer C, Häberle H, Pham DT. Cataract surgery in patients with end-stage glaucoma. Klin Monatsbl Augenheilkd. 2006; 223:297–302.
33. Shaffer RM. Rosenthal G. Comparison of cataract incidence in normal and glaucomatous population. Am J Ophthalmol. 1970; 69:368–71.
34. Go GB, Kim DW, Baek NH. Intraocular pressure change aberrations cataract surgery in patient with high intraocular pressure. J Korean Ophthalmol Soc. 1993; 324:1128–34.
35. Greve EL, Wagemans MJ. Glaucoma and Cataract. 1st ed.Asterdam: Kugler publications;1986. p. 51–7.
36. Greve EL, Wagemans MJ. Glaucoma and Cataract. 1st ed.Asterdam: Kugler publications;1986. p. 59–64.
37. Jin YH, Oh YK, Kim JW. Intraocular pressure change after cataract surgery in patients with controlled chronic glaucoma. J Korean Ophthalmol Soc. 2001; 42:1289–94.
38. Lee SH, Jea SY. The change of intraocular pressure after aberrations cataract extraction in patients with angle-closure glaucoma. J Korean Ophthalmol Soc. 2001; 42:73–8.
39. Bleckmann H. Posterior chamber lenses and glaucoma). Klin Monatsbl Augenheilkd. 1985; 82:187:173–7.
40. Handa J, Henry C, Krupin T, Keates E. Extracapsular cataract extraction with posterior chamber lens implantation in patients with glaucoma. Arch Ophthalmol. 1987; 105:765–9.
Article
Full Text Links
  • JKOS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr