Prog Med Phys.
2012 Dec;23(4):309-316.
List-event Data Resampling for Quantitative Improvement of PET Image
- Affiliations
-
- 1Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea. kmkim@kcch.re.kr
Abstract
- Multimodal-imaging technique has been rapidly developed for improvement of diagnosis and evaluation of therapeutic effects. In despite of integrated hardware, registration accuracy was decreased due to a discrepancy between multimodal image and insufficiency of count in accordance with different acquisition method of each modality. The purpose of this study was to improve the PET image by event data resampling through analysis of data format, noise and statistical properties of small animal PET list data. Inveon PET listmode data was acquired as static data for 10 min after 60 min of 37 MBq/0.1 ml 18F-FDG injection via tail vein. Listmode data format was consist of packet containing 48 bit in which divided 8 bit header and 40 bit payload space. Realigned sinogram was generated from resampled event data of original listmode by using adjustment of LOR location, simple event magnification and nonparametric bootstrap. Sinogram was reconstructed for imaging using OSEM 2D algorithm with 16 subset and 4 iterations. Prompt coincidence was 13,940,707 count measured from PET data header and 13,936,687 count measured from analysis of list-event data. In simple event magnification of PET data, maximum was improved from 1.336 to 1.743, but noise was also increased. Resampling efficiency of PET data was assessed from de-noised and improved image by shift operation of payload value of sequential packet. Bootstrap resampling technique provides the PET image which noise and statistical properties was improved. List-event data resampling method would be aid to improve registration accuracy and early diagnosis efficiency.