Nutr Res Pract.  2012 Feb;6(1):68-77.

Dietary flavan-3-ols intake and metabolic syndrome risk in Korean adults

Affiliations
  • 1Department of Nutritional Science and Food Management, Ewha Womans University, 11-1 Daehyeon-dong, Seodeamun-gu, Seoul 120-750, Korea. orank@ewha.ac.kr

Abstract

Flavan-3-ols are a subclass of flavonoids found in a variety of foods including teas. The effects of flavan-3-ols on the risk of metabolic syndrome (MetS) have been investigated, generally focusing on tea catechins or individual flavan-3-ol rich foods, but there is little information on dietary flavan-3-ols intake and risk of MetS in population-based studies. In this cross-sectional study, we examined the association between dietary flavan-3-ols intake and the risk of MetS in Korean adults. Subjects comprised 1,827 men and 2,918 women aged 20-69 years whose data was included in the 2008 Korean National Health and Nutrition Examination Survey. This survey was conducted between January 2008 and December 2008. Total flavan-3-ols intakes were calculated from 24-hour dietary recalls using a flavonoids database. Thirty percent of the male subjects and 24% of the female subjects were reported as having MetS. In the female subjects, flavan3-ols intake was inversely associated with the risk of MetS after adjusting for potential confounders (5th vs. 1st quintile, OR = 0.64, 95% CI = 0.45-0.91, P for trend = 0.384). The main food source of flavan-3-ols was green tea followed by apples and grapes. Among MetS components, flavan3-ols intake was inversely associated with the risk of high blood pressure after adjusting for potential confounders (5th vs. 1st quintile, OR = 0.64, 95% CI = 0.45-0.90, P for trend = 0.005). No significant association between flavan-3-ols intake and risk of MetS was found in the male subjects. After stratified analysis by obesity (BMI > or = 25 or BMI < 25), however, flavan3-ols intake was inversely related to the risk of hypertension in non-obese men. These results suggest that dietary flavan-3-ols intake may have beneficial effects on MetS risk by reducing the risk of hypertension. The effects of flavan-3-ols intake dependent on obesity need further investigation.

Keyword

Flavan-3-ols; metabolic syndrome; flavonoids; hypertension; hyperglycaemia

MeSH Terms

Adult
Aged
Catechin
Cross-Sectional Studies
Female
Flavonoids
Humans
Hypertension
Male
Malus
Nutrition Surveys
Obesity
Tea
Vitis
Catechin
Flavonoids
Tea

Figure

  • Fig. 1 Adjusted ORs and 95% CIs of MetS and MetS components by quintiles of flavan-3-ols in males according to obesity after adjusting for age, BMI, education (elementary, middle, high, college), current smoking (yes/past/no), regular exercise (yes/no), functional food use (yes/no), and intakes of total energy, fat, and fiber.

  • Fig. 2 Adjusted ORs and 95% CIs of MetS and MetS components by quintiles of flavan-3-ols in females according to obesity after adjusting for age, BMI, education (elementary, middle, high, college), current drinking (more than once a month/none), vitamin/mineral supplement use (yes/no), functional food use (yes/no), and intakes of total energy, fat, fiber, and carbohydrate.


Reference

1. Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr. 2005. 81:243S–255S.
Article
2. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005. 81:230S–242S.
Article
3. Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R, Chen SS. Flavonoids in food and their health benefits. Plant Foods Hum Nutr. 2004. 59:113–122.
Article
4. Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Bonadonna RC, Muggeo M. Bruneck Study. Metabolic syndrome: epidemiology and more extensive phenotypic description. Cross-sectional data from the Bruneck Study. Int J Obes Relat Metab Disord. 2003. 27:1283–1289.
Article
5. Wilson PW, D'Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005. 112:3066–3072.
Article
6. Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care. 2005. 28:1769–1778.
Article
7. Sahyoun NR, Jacques PF, Zhang XL, Juan W, McKeown NM. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am J Clin Nutr. 2006. 83:124–131.
Article
8. Liu S, Song Y, Ford ES, Manson JE, Buring JE, Ridker PM. Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care. 2005. 28:2926–2932.
Article
9. Kim JA, Kim SM, Lee JS, Oh HJ, Han JH, Song Y, Joung H, Park HS. Dietary patterns and the metabolic syndrome in Korean adolescents: 2001 Korean National Health and Nutrition Survey. Diabetes Care. 2007. 30:1904–1905.
10. Kobayashi M, Unno T, Suzuki Y, Nozawa A, Sagesaka Y, Kakuda T, Ikeda I. Heat-epimerized tea catechins have the same cholesterol-lowering activity as green tea catechins in cholesterol-fed rats. Biosci Biotechnol Biochem. 2005. 69:2455–2458.
Article
11. Ikeda I, Tsuda K, Suzuki Y, Kobayashi M, Unno T, Tomoyori H, Goto H, Kawata Y, Imaizumi K, Nozawa A, Kakuda T. Tea catechins with a galloyl moiety suppress postprandial hypertriacylglycerolemia by delaying lymphatic transport of dietary fat in rats. J Nutr. 2005. 135:155–159.
Article
12. Ikeda I, Hamamoto R, Uzu K, Imaizumi K, Nagao K, Yanagita T, Suzuki Y, Kobayashi M, Kakuda T. Dietary gallate esters of tea catechins reduce deposition of visceral fat, hepatic triacylglycerol, and activities of hepatic enzymes related to fatty acid synthesis in rats. Biosci Biotechnol Biochem. 2005. 69:1049–1053.
Article
13. Imai K, Nakachi K. Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ. 1995. 310:693–696.
Article
14. Sano J, Inami S, Seimiya K, Ohba T, Sakai S, Takano T, Mizuno K. Effects of green tea intake on the development of coronary artery disease. Circ J. 2004. 68:665–670.
Article
15. Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA. 2006. 296:1255–1265.
Article
16. Høstmark AT. The Oslo Health Study: a Dietary Index estimating high intake of soft drinks and low intake of fruits and vegetables was positively associated with components of the metabolic syndrome. Appl Physiol Nutr Metab. 2010. 35:816–825.
Article
17. Miura K, Greenland P, Stamler J, Liu K, Daviglus ML, Nakagawa H. Relation of vegetable, fruit, and meat intake to 7-year blood pressure change in middle-aged men: the Chicago Western Electric Study. Am J Epidemiol. 2004. 159:572–580.
Article
18. Andrade AC, Cesena FH, Consolim-Colombo FM, Coimbra SR, Benjó AM, Krieger EM, Luz PL. Short-term red wine consumption promotes differential effects on plasma levels of high-density lipoprotein cholesterol, sympathetic activity, and endothelial function in hypercholesterolemic, hypertensive, and healthy subjects. Clinics (Sao Paulo). 2009. 64:435–442.
Article
19. Grassi D, Mulder TP, Draijer R, Desideri G, Molhuizen HO, Ferri C. Black tea consumption dose-dependently improves flow-mediated dilation in healthy males. J Hypertens. 2009. 27:774–781.
Article
20. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C. American Heart Association. National Heart, Lung, and Blood Institute. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004. 109:433–438.
21. Lee SY, Park HS, Kim DJ, Han JH, Kim SM, Cho GJ, Kim DY, Kwon HS, Kim SR, Lee CB, Oh SJ, Park CY, Yoo HJ. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res Clin Pract. 2007. 75:72–80.
Article
22. USDA Database for the Flavonoid Content of Selected Foods. Beltsville Human Nutrition Research Center, U.S. Department of Agriculture, Agricultural Research Service [Internet]. cited 2007 January 31. Available from: http://www.ars.usda.gov/SP2UserFiles/Place/12354500/Data/Flav/Flav02-1.pdf.
23. Functional Food Factor. National Institute of Health and Nutrition in Japan [Internet]. cited 2008 January 20. Available from: http://www.nih.go.jp/eiken/english/index.html.
24. National Academy of Agricultural Science. Tables of Food Functional Composition. 2009. Suwon: National Academy of Agricultural Science.
25. Johannot L, Somerset SM. Age-related variations in flavonoid intake and sources in the Australian population. Public Health Nutr. 2006. 9:1045–1054.
Article
26. Zamora-Ros R, Andres-Lacueva C, Lamuela-Raventós RM, Berenguer T, Jakszyn P, Barricarte A, Ardanaz E, Amiano P, Dorronsoro M, Larrañaga N, Martínez C, Sánchez MJ, Navarro C, Chirlaque MD, Tormo MJ, Quirós JR, González CA. Estimation of dietary sources and flavonoid intake in a Spanish adult population (EPIC-Spain). J Am Diet Assoc. 2010. 110:390–398.
Article
27. Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr. 2007. 137:1244–1252.
Article
28. Kim W, Jeong MH, Cho SH, Yun JH, Chae HJ, Ahn YK, Lee MC, Cheng X, Kondo T, Murohara T, Kang JC. Effect of green tea consumption on endothelial function and circulating endothelial progenitor cells in chronic smokers. Circ J. 2006. 70:1052–1057.
Article
29. Tinahones FJ, Rubio MA, Garrido-Sánchez L, Ruiz C, Gordillo E, Cabrerizo L, Cardona F. Green tea reduces LDL oxidability and improves vascular function. J Am Coll Nutr. 2008. 27:209–213.
Article
30. Antonello M, Montemurro D, Bolognesi M, Di Pascoli M, Piva A, Grego F, Sticchi D, Giuliani L, Garbisa S, Rossi GP. Prevention of hypertension, cardiovascular damage and endothelial dysfunction with green tea extracts. Am J Hypertens. 2007. 20:1321–1328.
Article
31. Potenza MA, Marasciulo FL, Tarquinio M, Tiravanti E, Colantuono G, Federici A, Kim JA, Quon MJ, Montagnani M. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab. 2007. 292:E1378–E1387.
Article
32. Miura Y, Chiba T, Tomita I, Koizumi H, Miura S, Umegaki K, Hara Y, Ikeda M, Tomita T. Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice. J Nutr. 2001. 131:27–32.
Article
33. Lorenz M, Wessler S, Follmann E, Michaelis W, Düsterhöft T, Baumann G, Stangl K, Stangl V. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J Biol Chem. 2004. 279:6190–6195.
Article
34. Schewe T, Steffen Y, Sies H. How do dietary flavanols improve vascular function? A position paper. Arch Biochem Biophys. 2008. 476:102–106.
Article
35. Anderson RA, Polansky MM. Tea enhances insulin activity. J Agric Food Chem. 2002. 50:7182–7186.
Article
36. Mizugaki M, Ishizawa F, Yamazaki T, Hishinuma T. Epigallocatechin gallate increase the prostacyclin production of bovine aortic endothelial cells. Prostaglandins Other Lipid Mediat. 2000. 62:157–164.
Article
37. Kalgaonkar S, Nishioka H, Gross HB, Fujii H, Keen CL, Hackman RM. Bioactivity of a flavanol-rich lychee fruit extract in adipocytes and its effects on oxidant defense and indices of metabolic syndrome in animal models. Phytother Res. 2010. 24:1223–1228.
Article
Full Text Links
  • NRP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr