J Breast Cancer.  2016 Jun;19(2):99-111. 10.4048/jbc.2016.19.2.99.

Molecular Portrait of the Normal Human Breast Tissue and Its Influence on Breast Carcinogenesis

Affiliations
  • 1Department XII-Obstetrics and Gynecology, Neonatology and Perinatal Care, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.
  • 2Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania. ancacimpean1972@yahoo.com
  • 3Department of Surgery, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.

Abstract

Normal human breast tissue consists of epithelial and nonepithelial cells with different molecular profiles and differentiation grades. This molecular heterogeneity is known to yield abnormal clones that may contribute to the development of breast carcinomas. Stem cells that are found in developing and mature breast tissue are either positive or negative for cytokeratin 19 depending on their subtype. These cells are able to generate carcinogenesis along with mature cells. However, scientific data remains controversial regarding the monoclonal or polyclonal origin of breast carcinomas. The majority of breast carcinomas originate from epithelial cells that normally express BRCA1. The consecutive loss of the BRCA1 gene leads to various abnormalities in epithelial cells. Normal breast epithelial cells also express hypoxia inducible factor (HIF) 1α and HIF-2α that are associated with a high metastatic rate and a poor prognosis for malignant lesions. The nuclear expression of estrogen receptor (ER) and progesterone receptor (PR) in normal human breast tissue is maintained in malignant tissue as well. Several controversies regarding the ability of ER and PR status to predict breast cancer outcome remain. Both ER and PR act as modulators of cell activity in normal human breast tissue. Ki-67 positivity is strongly correlated with tumor grade although its specific role in applied therapy requires further studies. Human epidermal growth factor receptor 2 (HER2) oncoprotein is less expressed in normal human breast specimens but is highly expressed in certain malignant lesions of the breast. Unlike HER2, epidermal growth factor receptor expression is similar in both normal and malignant tissues. Molecular heterogeneity is not only found in breast carcinomas but also in normal breast tissue. Therefore, the molecular mapping of normal human breast tissue might represent a key research area to fully elucidate the mechanisms of breast carcinogenesis.

Keyword

Breast neoplasms; Carcinogenesis; Normal mammary gland; Transcriptome

MeSH Terms

Anoxia
Breast Neoplasms
Breast*
Carcinogenesis*
Clone Cells
Epithelial Cells
Estrogens
Genes, BRCA1
Humans*
Keratin-19
Population Characteristics
Prognosis
Receptor, Epidermal Growth Factor
Receptors, Progesterone
Stem Cells
Transcriptome
Estrogens
Keratin-19
Receptor, Epidermal Growth Factor
Receptors, Progesterone

Reference

1. Keller PJ, Lin AF, Arendt LM, Klebba I, Jones AD, Rudnick JA, et al. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res. 2010; 12:R87. PMID: 20964822.
Article
2. Larson PS, de las Morenas A, Bennett SR, Cupples LA, Rosenberg CL. Loss of heterozygosity or allele imbalance in histologically normal breast epithelium is distinct from loss of heterozygosity or allele imbalance in co-existing carcinomas. Am J Pathol. 2002; 161:283–290. PMID: 12107113.
Article
3. Larson PS, de las Morenas A, Cupples LA, Huang K, Rosenberg CL. Genetically abnormal clones in histologically normal breast tissue. Am J Pathol. 1998; 152:1591–1598. PMID: 9626062.
4. Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PA, Smith HS. Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res. 1996; 56:402–404. PMID: 8542598.
5. Villadsen R, Fridriksdottir AJ, Rønnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, et al. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol. 2007; 177:87–101. PMID: 17420292.
Article
6. Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001; 67:93–109. PMID: 11519870.
Article
7. Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008; 3:109–118. PMID: 18593563.
Article
8. Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med. 2008; 14:1384–1389. PMID: 19029987.
Article
9. Dairkee SH, Puett L, Hackett AJ. Expression of basal and luminal epithelium-specific keratins in normal, benign, and malignant breast tissue. J Natl Cancer Inst. 1988; 80:691–695. PMID: 2453676.
10. Smith GH, Chepko G. Mammary epithelial stem cells. Microsc Res Tech. 2001; 52:190–203. PMID: 11169867.
Article
11. Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, McGrath CM, et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990; 50:6075–6086. PMID: 1975513.
12. Holst CR, Nuovo GJ, Esteller M, Chew K, Baylin SB, Herman JG, et al. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res. 2003; 63:1596–1601. PMID: 12670910.
13. Santagata S, Thakkar A, Ergonul A, Wang B, Woo T, Hu R, et al. Taxonomy of breast cancer based on normal cell phenotype predicts outcome. J Clin Invest. 2014; 124:859–870. PMID: 24463450.
Article
14. Graham K, de las Morenas A, Tripathi A, King C, Kavanah M, Mendez J, et al. Gene expression in histologically normal epithelium from breast cancer patients and from cancer-free prophylactic mastectomy patients shares a similar profile. Br J Cancer. 2010; 102:1284–1293. PMID: 20197764.
Article
15. Schummer M, Green A, Beatty JD, Karlan BY, Karlan S, Gross J, et al. Comparison of breast cancer to healthy control tissue discovers novel markers with potential for prognosis and early detection. PLoS One. 2010; 5:e9122. PMID: 20161755.
Article
16. Tripathi A, King C, de la Morenas A, Perry VK, Burke B, Antoine GA, et al. Gene expression abnormalities in histologically normal breast epithelium of breast cancer patients. Int J Cancer. 2008; 122:1557–1566. PMID: 18058819.
Article
17. Zubor P, Hatok J, Moricova P, Kajo K, Kapustova I, Mendelova A, et al. Gene expression abnormalities in histologically normal breast epithelium from patients with luminal type of breast cancer. Mol Biol Rep. 2015; 42:977–988. PMID: 25407308.
Article
18. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 2001; 15:50–65. PMID: 11156605.
Article
19. Lakhani SR, Chaggar R, Davies S, Jones C, Collins N, Odel C, et al. Genetic alterations in 'normal' luminal and myoepithelial cells of the breast. J Pathol. 1999; 189:496–503. PMID: 10629549.
Article
20. Going JJ, Abd El-Monem HM, Craft JA. Clonal origins of human breast cancer. J Pathol. 2001; 194:406–412. PMID: 11523047.
Article
21. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998; 396:643–649. PMID: 9872311.
Article
22. Degnim AC, Visscher DW, Hoskin TL, Frost MH, Vierkant RA, Vachon CM, et al. Histologic findings in normal breast tissues: comparison to reduction mammaplasty and benign breast disease tissues. Breast Cancer Res Treat. 2012; 133:169–177. PMID: 21881938.
Article
23. Grigoriadis A, Mackay A, Reis-Filho JS, Steele D, Iseli C, Stevenson BJ, et al. Establishment of the epithelial-specific transcriptome of normal and malignant human breast cells based on MPSS and array expression data. Breast Cancer Res. 2006; 8:R56. PMID: 17014703.
Article
24. Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports. 2013; 2:78–91. PMID: 24511467.
Article
25. Ma L, Nie L, Liu J, Zhang B, Song S, Sun M, et al. An RNA-seq-based gene expression profiling of radiation-induced tumorigenic mammary epithelial cells. Genomics Proteomics Bioinformatics. 2012; 10:326–335. PMID: 23317700.
Article
26. Smart CE, Wronski A, French JD, Edwards SL, Asselin-Labat ML, Waddell N, et al. Analysis of Brca1-deficient mouse mammary glands reveals reciprocal regulation of Brca1 and c-kit. Oncogene. 2011; 30:1597–1607. PMID: 21132007.
Article
27. Al-Rakan MA, Colak D, Hendrayani SF, Al-Bakheet A, Al-Mohanna FH, Kaya N, et al. Breast stromal fibroblasts from histologically normal surgical margins are pro-carcinogenic. J Pathol. 2013; 231:457–465. PMID: 24009142.
28. Zubeldia-Plazaola A, Ametller E, Mancino M, Prats de Puig M, López-Plana A, Guzman F. Comparison of methods for the isolation of human breast epithelial and myoepithelial cells. Front Cell Dev Biol. 2015; 3:32. PMID: 26052514.
Article
29. Påhlman S, Lund LR, Jögi A. Differential HIF-1alpha and HIF-2alpha expression in mammary epithelial cells during fat pad invasion, lactation, and involution. PLoS One. 2015; 10:e0125771. PMID: 25955753.
30. Pistone Creydt V, Fletcher SJ, Giudice J, Bruzzone A, Chasseing NA, Gonzalez EG, et al. Human adipose tissue from normal and tumoral breast regulates the behavior of mammary epithelial cells. Clin Transl Oncol. 2013; 15:124–131. PMID: 22855180.
Article
31. Miettinen M, Mustonen M, Poutanen M, Isomaa V, Wickman M, Söderqvist G, et al. 17Beta-hydroxysteroid dehydrogenases in normal human mammary epithelial cells and breast tissue. Breast Cancer Res Treat. 1999; 57:175–182. PMID: 10598044.
32. Bernstein L, Press MF. Does estrogen receptor expression in normal breast tissue predict breast cancer risk? J Natl Cancer Inst. 1998; 90:5–7. PMID: 9428773.
Article
33. Buxant F, Engohan-Aloghe C, Noël JC. Estrogen receptor, progesterone receptor, and glucocorticoid receptor expression in normal breast tissue, breast in situ carcinoma, and invasive breast cancer. Appl Immunohistochem Mol Morphol. 2010; 18:254–257. PMID: 19875955.
Article
34. Connor EE, Meyer MJ, Li RW, Van Amburgh ME, Boisclair YR, Capuco AV. Regulation of gene expression in the bovine mammary gland by ovarian steroids. J Dairy Sci. 2007; 90(Suppl 1):E55–E65. PMID: 17517752.
Article
35. Khan SA, Yee KA, Kaplan C, Siddiqui JF. Estrogen receptor alpha expression in normal human breast epithelium is consistent over time. Int J Cancer. 2002; 102:334–337. PMID: 12402301.
36. Shoker BS, Jarvis C, Clarke RB, Anderson E, Hewlett J, Davies MP, et al. Estrogen receptor-positive proliferating cells in the normal and precancerous breast. Am J Pathol. 1999; 155:1811–1815. PMID: 10595909.
Article
37. Ricketts D, Turnbull L, Ryall G, Bakhshi R, Rawson NS, Gazet JC, et al. Estrogen and progesterone receptors in the normal female breast. Cancer Res. 1991; 51:1817–1822. PMID: 2004366.
38. Lawson JS, Field AS, Tran DD, Killeen J, Maskarenic G, Ishikura H, et al. Breast cancer incidence and estrogen receptor alpha in normal mammary tissue: an epidemiologic study among Japanese women in Japan and Hawaii. Int J Cancer. 2002; 97:685–687. PMID: 11807798.
39. Huang B, Omoto Y, Iwase H, Yamashita H, Toyama T, Coombes RC, et al. Differential expression of estrogen receptor alpha, beta1, and beta2 in lobular and ductal breast cancer. Proc Natl Acad Sci U S A. 2014; 111:1933–1938. PMID: 24449868.
40. Chantzi NI, Palaiologou M, Stylianidou A, Goutas N, Vassilaros S, Kourea HP, et al. Estrogen receptor beta2 is inversely correlated with Ki-67 in hyperplastic and noninvasive neoplastic breast lesions. J Cancer Res Clin Oncol. 2014; 140:1057–1066. PMID: 24671226.
41. Inwald EC, Klinkhammer-Schalke M, Hofstädter F, Zeman F, Koller M, Gerstenhauer M, et al. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat. 2013; 139:539–552. PMID: 23674192.
Article
42. Fasching PA, Heusinger K, Haeberle L, Niklos M, Hein A, Bayer CM, et al. Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer. 2011; 11:486. PMID: 22081974.
Article
43. Romero Q, Bendahl PO, Fernö M, Grabau D, Borgquist S. A novel model for Ki67 assessment in breast cancer. Diagn Pathol. 2014; 9:118. PMID: 24934660.
Article
44. Järvinen TA, Pelto-Huikko M, Holli K, Isola J. Estrogen receptor beta is coexpressed with ERalpha and PR and associated with nodal status,grade, and proliferation rate in breast cancer. Am J Pathol. 2000; 156:29–35. PMID: 10623650.
45. Green AR, Young P, Krivinskas S, Rakha EA, Claire Paish E, Powe DG, et al. The expression of ERalpha, ERbeta and PR in lobular carcinoma in situ of the breast determined using laser microdissection and real-time PCR. Histopathology. 2009; 54:419–427. PMID: 19309393.
46. Tong D, Schuster E, Seifert M, Czerwenka K, Leodolte S, Zeillinger R. Expression of estrogen receptor beta isoforms in human breast cancer tissues and cell lines. Breast Cancer Res Treat. 2002; 71:249–255. PMID: 12002343.
Article
47. Haslam SZ, Shyamala G. Progesterone receptors in normal mammary gland: receptor modulations in relation to differentiation. J Cell Biol. 1980; 86:730–737. PMID: 7410476.
Article
48. Anderson E. The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res. 2002; 4:197–201. PMID: 12223124.
Article
49. Haslam SZ. Acquisition of estrogen-dependent progesterone receptors by normal mouse mammary gland: ontogeny of mammary progesterone receptors. J Steroid Biochem. 1988; 31:9–13. PMID: 3398533.
Article
50. Wang S, Counterman LJ, Haslam SZ. Progesterone action in normal mouse mammary gland. Endocrinology. 1990; 127:2183–2189. PMID: 2226309.
Article
51. Fink-Retter A, Gschwantler-Kaulich D, Hudelist G, Mueller R, Kubista E, Czerwenka K, et al. Differential spatial expression and activation pattern of EGFR and HER2 in human breast cancer. Oncol Rep. 2007; 18:299–304. PMID: 17611648.
Article
52. Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990; 5:953–962. PMID: 1973830.
53. Flågeng MH, Knappskog S, Haynes BP, Lønning PE, Mellgren G. Inverse regulation of EGFR/HER1 and HER2-4 in normal and malignant human breast tissue. PLoS One. 2013; 8:e74618. PMID: 23991224.
Article
54. Camp RL, Dolled-Filhart M, King BL, Rimm DL. Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. Cancer Res. 2003; 63:1445–1448. PMID: 12670887.
55. Hicks DG, Schiffhauer L. Standardized assessment of the HER2 status in breast cancer by immunohistochemistry. Lab Med. 2011; 42:459–467.
Article
56. Niikura N, Ueno NT. Change in HER2 status during breast tumor progression. Cancer Biomark. 2012-2013; 12:251–255. PMID: 23735945.
Article
57. Luna-Moré S, Weil B, Bautista D, Garrido E, Florez P, Martínez C. Bcl-2 protein in normal, hyperplastic and neoplastic breast tissues: a metabolite of the putative stem-cell subpopulation of the mammary gland. Histol Histopathol. 2004; 19:457–463. PMID: 15024706.
58. Yu B, Sun X, Shen HY, Gao F, Fan YM, Sun ZJ. Expression of the apoptosis-related genes BCL-2 and BAD in human breast carcinoma and their associated relationship with chemosensitivity. J Exp Clin Cancer Res. 2010; 29:107. PMID: 20691103.
Article
59. Bargou RC, Daniel PT, Mapara MY, Bommert K, Wagener C, Kallinich B, et al. Expression of the bcl-2 gene family in normal and malignant breast tissue: low bax-alpha expression in tumor cells correlates with resistance towards apoptosis. Int J Cancer. 1995; 60:854–859. PMID: 7896458.
60. Cericatto R, Pozzobon A, Morsch DM, Menke CH, Brum IS, Spritzer PM. Estrogen receptor-alpha, bcl-2 and c-myc gene expression in fibroadenomas and adjacent normal breast: association with nodule size, hormonal and reproductive features. Steroids. 2005; 70:153–160. PMID: 15763593.
61. Lima MA, da Silva BB. Expression of Ki-67 and Bcl-2 biomarkers in normal breast tissue from women of reproductive age treated with raloxifene. Arch Gynecol Obstet. 2012; 285:223–227. PMID: 21573987.
Article
62. Feuerhake F, Sigg W, Höfter EA, Dimpfl T, Welsch U. Immunohistochemical analysis of Bcl-2 and Bax expression in relation to cell turnover and epithelial differentiation markers in the non-lactating human mammary gland epithelium. Cell Tissue Res. 2000; 299:47–58. PMID: 10654069.
Article
63. Tarulli GA, Butler LM, Tilley WD, Hickey TE. Bringing androgens up a NOTCH in breast cancer. Endocr Relat Cancer. 2014; 21:T183–T202. PMID: 25001242.
Article
64. Nieto CM, Rider LC, Cramer SD. Influence of stromal-epithelial interactions on androgen action. Endocr Relat Cancer. 2014; 21:T147–T160. PMID: 24872510.
Article
65. Barton VN, D'Amato NC, Gordon MA, Christenson JL, Elias A, Richer JK. Androgen receptor biology in triple negative breast cancer: a case for classification as AR+ or quadruple negative disease. Horm Cancer. 2015; 6:206–213. PMID: 26201402.
Article
66. Al Joudi FS. Human mammaglobin in breast cancer: a brief review of its clinical utility. Indian J Med Res. 2014; 139:675–685. PMID: 25027076.
67. Koh EH, Cho YW, Mun YJ, Ryu JH, Kim EJ, Choi DS, et al. Upregulation of human mammaglobin reduces migration and invasion of breast cancer cells. Cancer Invest. 2014; 32:22–29. PMID: 24328556.
Article
68. Huang Y, Zhang HQ, Wang J, Song XG, Wang GH, Guan Q, et al. Cloning expression, monoclonal antibody preparation and serologic study of mammaglobin in breast cancer. Neoplasma. 2011; 58:436–440. PMID: 21744998.
Article
69. Tafreshi NK, Enkemann SA, Bui MM, Lloyd MC, Abrahams D, Huynh AS, et al. A mammaglobin-A targeting agent for noninvasive detection of breast cancer metastasis in lymph nodes. Cancer Res. 2011; 71:1050–1059. PMID: 21169406.
Article
70. Rehman F, Nagi AH, Hussain M. Immunohistochemical expression and correlation of mammaglobin with the grading system of breast carcinoma. Indian J Pathol Microbiol. 2010; 53:619–623. PMID: 21045380.
Article
71. van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008; 65:3756–3788. PMID: 18726070.
Article
72. Takeichi M. Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem. 1990; 59:237–252. PMID: 2197976.
Article
73. Berx G, Van Roy F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res. 2001; 3:289–293. PMID: 11597316.
Article
74. Ionescu Popescu C, Giuşcă SE, Liliac L, Avadanei R, Ceaşuu R, Cîmpean AM, et al. E-cadherin expression in molecular types of breast carcinoma. Rom J Morphol Embryol. 2013; 54:267–273. PMID: 23771069.
75. Fulga V, Rudico L, Balica AR, Cimpean AM, Saptefrati L, Margan MM, et al. Differential expression of E-cadherin in primary breast cancer and corresponding lymph node metastases. Anticancer Res. 2015; 35:759–765. PMID: 25667455.
76. Ren S, Abuel-Haija M, Khurana JS, Zhang X. D2-40: an additional marker for myoepithelial cells of breast and the precaution in interpreting tumor lymphovascular invasion. Int J Clin Exp Pathol. 2011; 4:175–182. PMID: 21326813.
77. Kanner WA, Galgano MT, Atkins KA. Podoplanin expression in basal and myoepithelial cells: utility and potential pitfalls. Appl Immunohistochem Mol Morphol. 2010; 18:226–230. PMID: 20042851.
78. Rabban JT, Chen YY. D2-40 expression by breast myoepithelium: potential pitfalls in distinguishing intralymphatic carcinoma from in situ carcinoma. Hum Pathol. 2008; 39:175–183. PMID: 18206495.
Article
79. Van der Auwera I, Van den Eynden GG, Colpaert CG, Van Laere SJ, van Dam P, Van Marck EA, et al. Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res. 2005; 11:7637–7642. PMID: 16278382.
Article
80. Kaiserling E. Immunohistochemical identification of lymph vessels with D2-40 in diagnostic pathology. Pathologe. 2004; 25:362–374. PMID: 15164222.
Article
81. Viacava P, Naccarato AG, Bevilacqua G. Spectrum of GCDFP-15 expression in human fetal and adult normal tissues. Virchows Arch. 1998; 432:255–260. PMID: 9532005.
Article
82. Cassoni P, Sapino A, Haagensen DE, Naldoni C, Bussolati G. Mitogenic effect of the 15-kDa gross cystic disease fluid protein (GCDFP-15) on breast-cancer cell lines and on immortal mammary cells. Int J Cancer. 1995; 60:216–220. PMID: 7829219.
Article
83. Myal Y, Robinson DB, Iwasiow B, Tsuyuki D, Wong P, Shiu RP. The prolactin-inducible protein (PIP/GCDFP-15) gene: cloning, structure and regulation. Mol Cell Endocrinol. 1991; 80:165–175. PMID: 1955075.
Article
84. Chen L, Yin X, Lu S, Chen G, Dong L. Basal cytokeratin phenotypes of myoepithelial cells indicates the origin of ductal carcinomas in situ of the breast. Appl Immunohistochem Mol Morphol. 2015; 23:558–564. PMID: 26336082.
Article
85. Gromova I, Gromov P, Honma N, Kumar S, Rimm D, Talman ML, et al. High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol Oncol. 2015; 9:1636–1654. PMID: 26026368.
Article
86. Li Z, Ren M, Tian J, Jiang S, Liu Y, Zhang L, et al. The differences in ultrasound and clinicopathological features between basal-like and normal-like subtypes of triple negative breast cancer. PLoS One. 2015; 10:e0114820. PMID: 25734578.
Article
87. Hyun KA, Goo KB, Han H, Sohn J, Choi W, Kim SI, et al. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget. 2016; 3. 22. DOI: 10.18632/oncotarget.8250. Epub.
Article
88. Spizzo G, Gastl G, Wolf D, Gunsilius E, Steurer M, Fong D, et al. Correlation of COX-2 and Ep-CAM overexpression in human invasive breast cancer and its impact on survival. Br J Cancer. 2003; 88:574–578. PMID: 12592372.
Article
89. Braun S, Hepp F, Kentenich CR, Janni W, Pantel K, Riethmüller G, et al. Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow. Clin Cancer Res. 1999; 5:3999–4004. PMID: 10632331.
90. Adamczyk A, Niemiec J, Ambicka A, Mucha-Małecka A, Ryś J, Mituś J, et al. Survival of breast cancer patients according to changes in expression of selected markers between primary tumor and lymph node metastases. Biomark Med. 2016; 10:219–228. PMID: 26860337.
Article
91. Lim J, Lee KM, Shim J, Shin I. CD24 regulates stemness and the epithelial to mesenchymal transition through modulation of Notch1 mRNA stability by p38MAPK. Arch Biochem Biophys. 2014; 558:120–126. PMID: 24977325.
Article
92. Suyama K, Onishi H, Imaizumi A, Shinkai K, Umebayashi M, Kubo M, et al. CD24 suppresses malignant phenotype by downregulation of SHH transcription through STAT1 inhibition in breast cancer cells. Cancer Lett. 2016; 374:44–53. PMID: 26797459.
Article
93. Chen Y, Song J, Jiang Y, Yu C, Ma Z. Predictive value of CD44 and CD24 for prognosis and chemotherapy response in invasive breast ductal carcinoma. Int J Clin Exp Pathol. 2015; 8:11287–11295. PMID: 26617852.
94. Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces. 2016; 143:532–546. PMID: 27045981.
Article
95. de Beça FF, Caetano P, Gerhard R, Alvarenga CA, Gomes M, Paredes J, et al. Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol. 2013; 66:187–191. PMID: 23112116.
Article
96. Xu H, Tian Y, Yuan X, Liu Y, Wu H, Liu Q, et al. Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis. Onco Targets Ther. 2016; 9:431–444. PMID: 26855592.
97. Bozorgi A, Khazaei M, Khazaei MR. New findings on breast cancer stem cells: a review. J Breast Cancer. 2015; 18:303–312. PMID: 26770236.
Article
98. Ghosh SK, Pantazopoulos P, Medarova Z, Moore A. Expression of underglycosylated MUC1 antigen in cancerous and adjacent normal breast tissues. Clin Breast Cancer. 2013; 13:109–118. PMID: 23122537.
Article
99. Rajabi H, Alam M, Takahashi H, Kharbanda A, Guha M, Ahmad R, et al. MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene. 2014; 33:1680–1689. PMID: 23584475.
Article
100. Haddon L, Hugh J. MUC1-mediated motility in breast cancer: a review highlighting the role of the MUC1/ICAM-1/Src signaling triad. Clin Exp Metastasis. 2015; 32:393–403. PMID: 25759211.
Article
101. Heublein S, Mayr D, Egger M, Karsten U, Goletz S, Angele M, et al. Immunoreactivity of the fully humanized therapeutic antibody PankoMab-GEX™ is an independent prognostic marker for breast cancer patients. J Exp Clin Cancer Res. 2015; 34:50. PMID: 25986064.
Article
102. Raina D, Uchida Y, Kharbanda A, Rajabi H, Panchamoorthy G, Jin C, et al. Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene. 2014; 33:3422–3431. PMID: 23912457.
Article
103. Chodosh LA. Expression of BRCA1 and BRCA2 in normal and neoplastic cells. J Mammary Gland Biol Neoplasia. 1998; 3:389–402. PMID: 10819533.
104. Albiges L, André F, Balleyguier C, Gomez-Abuin G, Chompret A, Delaloge S. Spectrum of breast cancer metastasis in BRCA1 mutation carriers: highly increased incidence of brain metastases. Ann Oncol. 2005; 16:1846–1847. PMID: 15972278.
Article
105. Chapa J, An G, Kulkarni SA. Examining the relationship between premalignant breast lesions, carcinogenesis and tumor evolution in the mammary epithelium using an agent-based model. PLoS One. 2016; 11:e0152298. PMID: 27023391.
Article
106. Hynes NE, Stoelzle T. Key signalling nodes in mammary gland development and cancer: Myc. Breast Cancer Res. 2009; 11:210. PMID: 19849814.
Article
107. Green AR, Aleskandarany MA, Agarwal D, Elsheikh S, Nolan CC, Diez-Rodriguez M, et al. MYC functions are specific in biological subtypes of breast cancer and confers resistance to endocrine therapy in luminal tumours. Br J Cancer. 2016; 114:917–928. PMID: 26954716.
Article
108. Bocca C, Ievolella M, Autelli R, Motta M, Mosso L, Torchio B, et al. Expression of Cox-2 in human breast cancer cells as a critical determinant of epithelial-to-mesenchymal transition and invasiveness. Expert Opin Ther Targets. 2014; 18:121–135. PMID: 24325753.
Article
109. Du Y, Shi A, Han B, Li S, Wu D, Jia H, et al. COX-2 silencing enhances tamoxifen antitumor activity in breast cancer in vivo and in vitro. Int J Oncol. 2014; 44:1385–1393. PMID: 24535190.
Article
110. Voutsadakis IA. Epithelial-mesenchymal transition (EMT) and regulation of EMT factors by steroid nuclear receptors in breast cancer: a review and in silico investigation. J Clin Med. 2016; 5:E11. PMID: 26797644.
Article
111. Curtit E, Nerich V, Mansi L, Chaigneau L, Cals L, Villanueva C, et al. Discordances in estrogen receptor status, progesterone receptor status, and HER2 status between primary breast cancer and metastasis. Oncologist. 2013; 18:667–674. PMID: 23723333.
Article
112. Luqmani YA, Alam-Eldin N. Overcoming resistance to endocrine therapy in breast cancer: new approaches to a nagging problem. Med Princ Pract. Epub. 2016; 2. 05. DOI: 10.1159/000444451.
Article
113. Takashima T, Mukai H, Hara F, Matsubara N, Saito T, Takano T, et al. Taxanes versus S-1 as the first-line chemotherapy for metastatic breast cancer (SELECT BC): an open-label, non-inferiority, randomised phase 3 trial. Lancet Oncol. 2016; 17:90–98. PMID: 26617202.
Article
114. Wang X, Yarid N, McMahon L, Yang Q, Hicks DG. Expression of androgen receptor and its association with estrogen receptor and androgen receptor downstream proteins in normal/benign breast luminal epithelium. Appl Immunohistochem Mol Morphol. 2014; 22:498–504. PMID: 24897063.
Article
115. Zhao L, Niu F, Shen H, Liu X, Chen L, Niu Y. Androgen receptor and metastasis-associated protein-1 are frequently expressed in estrogen receptor negative/HER2 positive breast cancer. Virchows Arch. 2016; 468:687–696. PMID: 27026268.
Article
116. Rampurwala M, Wisinski KB, O'Regan R. Role of the androgen receptor in triple-negative breast cancer. Clin Adv Hematol Oncol. 2016; 14:186–193. PMID: 27058032.
117. McNamara KM, Yoda T, Miki Y, Nakamura Y, Suzuki T, Nemoto N, et al. Androgen receptor and enzymes in lymph node metastasis and cancer reoccurrence in triple-negative breast cancer. Int J Biol Markers. 2015; 30:e184–e189. PMID: 25588857.
Article
118. Vici P, Pizzuti L, Natoli C, Gamucci T, Di Lauro L, Barba M, et al. Triple positive breast cancer: a distinct subtype? Cancer Treat Rev. 2015; 41:69–76. PMID: 25554445.
Article
119. Tchafa AM, Ta M, Reginato MJ, Shieh AC. EMT transition alters interstitial fluid flow-induced signaling in ERBB2-positive breast cancer cells. Mol Cancer Res. 2015; 13:755–764. PMID: 25566992.
Article
120. Lee HJ, Kim JY, Park SY, Park IA, Song IH, Yu JH, et al. Clinicopathologic significance of the intratumoral heterogeneity of HER2 gene amplification in HER2-positive breast cancer patients treated with adjuvant trastuzumab. Am J Clin Pathol. 2015; 144:570–578. PMID: 26386078.
Article
121. Wang XZ, Liu Q, Sun JJ, Zuo WS, Hu DW, Ma SG, et al. Correlation between p53 and epidermal growth factor receptor expression in breast cancer classification. Genet Mol Res. 2015; 14:4282–4290. PMID: 25966200.
Article
122. Wendt MK, Williams WK, Pascuzzi PE, Balanis NG, Schiemann BJ, Carlin CR, et al. The antitumorigenic function of EGFR in metastatic breast cancer is regulated by expression of Mig6. Neoplasia. 2015; 17:124–133. PMID: 25622905.
Article
123. Tanei T, Choi DS, Rodriguez AA, Liang DH, Dobrolecki L, Ghosh M, et al. Antitumor activity of Cetuximab in combination with Ixabepilone on triple negative breast cancer stem cells. Breast Cancer Res. 2016; 18:6. PMID: 26757880.
Article
124. De Andrade JP, Park JM, Gu VW, Woodfield GW, Kulak MV, Lorenzen AW, et al. EGFR is regulated by TFAP2C in luminal breast cancer and is a target for vandetanib. Mol Cancer Ther. 2016; 15:503–511. PMID: 26832794.
Article
125. Flynn JF, Wong C, Wu JM. Anti-EGFR therapy: mechanism and advances in clinical efficacy in breast cancer. J Oncol. 2009; 2009:526963. PMID: 19390622.
Article
126. Tevaarwerk AJ, Kolesar JM. Lapatinib: a small-molecule inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor-2 tyrosine kinases used in the treatment of breast cancer. Clin Ther. 2009; 31 Pt 2:2332–2348. PMID: 20110044.
Article
127. Chae YK, Gagliato Dde M, Pai SG, Carneiro B, Mohindra N, Giles FJ, et al. The association between EGFR and cMET expression and phosphorylation and its prognostic implication in patients with breast cancer. PLoS One. 2016; 11:e0152585. PMID: 27055285.
Article
128. An J, Lv J, Li A, Qiao J, Fang L, Li Z, et al. Constitutive expression of Bcl-2 induces epithelial-Mesenchymal transition in mammary epithelial cells. BMC Cancer. 2015; 15:476. PMID: 26091803.
Article
129. Ruibal Á, Aguiar P, Del Río MC, Menéndez P, Arias JI, Herranz M. Positive immunohistochemical expression of bcl-2 in hormone-independent breast carcinomas is associated with a greater lymph node involvement and poor outcome. Med Oncol. 2014; 31:105. PMID: 25008065.
Article
130. Choi JE, Woo SM, Min KJ, Kang SH, Lee SJ, Kwon TK. Combined treatment with ABT-737 and VX-680 induces apoptosis in Bcl-2- and c-FLIP-overexpressing breast carcinoma cells. Oncol Rep. 2015; 33:1395–1401. PMID: 25592064.
Article
131. Weyhenmeyer B, Murphy AC, Prehn JH, Murphy BM. Targeting the anti-apoptotic Bcl-2 family members for the treatment of cancer. Exp Oncol. 2012; 34:192–199. PMID: 23070004.
132. Raica M, Cîmpean AM, Meche A, Alexa A, Suciu C, Mureşan A. Analysis of the immunohistochemical expression of mammaglobin A in primary breast carcinoma and lymph node metastasis. Rom J Morphol Embryol. 2009; 50:341–347. PMID: 19690758.
133. Li C, Zhang T. Human mammaglobin: a specific marker for breast cancer prognosis. J BUON. 2016; 21:35–41. PMID: 27061528.
134. Picot N, Guerrette R, Beauregard AP, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016; 55:1150–1162. PMID: 26207726.
Article
135. Kim SW, Goedegebuure P, Gillanders WE. Mammaglobin-A is a target for breast cancer vaccination. Oncoimmunology. 2016; 5:e1069940. PMID: 27057470.
Article
136. Ferro P, Franceschini MC, Bacigalupo B, Dessanti P, Falco E, Fontana V, et al. Detection of circulating tumour cells in breast cancer patients using human mammaglobin RT-PCR: association with clinical prognostic factors. Anticancer Res. 2010; 30:2377–2382. PMID: 20651396.
137. Bae YK, Choi JE, Kang SH, Lee SJ. Epithelial-mesenchymal transition phenotype is associated with clinicopathological factors that indicate aggressive biological behavior and poor clinical outcomes in invasive breast cancer. J Breast Cancer. 2015; 18:256–263. PMID: 26472976.
Article
138. Brouxhon SM, Kyrkanides S, Teng X, Raja V, O'Banion MK, Clarke R, et al. Monoclonal antibody against the ectodomain of E-cadherin (DECMA-1) suppresses breast carcinogenesis: involvement of the HER/PI3K/Akt/mTOR and IAP pathways. Clin Cancer Res. 2013; 19:3234–3246. PMID: 23620408.
Article
139. Pula B, Wojnar A, Witkiewicz W, Dziegiel P, Podhorska-Okolow M. Podoplanin expression in cancer-associated fibroblasts correlates with VEGF-C expression in cancer cells of invasive ductal breast carcinoma. Neoplasma. 2013; 60:516–524. PMID: 23790170.
Article
140. Raica M, Cimpean AM, Ribatti D. The role of podoplanin in tumor progression and metastasis. Anticancer Res. 2008; 28:2997–3006. PMID: 19031946.
141. Renart J, Carrasco-Ramírez P, Fernández-Muñoz B, Martín-Villar E, Montero L, Yurrita MM, et al. New insights into the role of podoplanin in epithelial-mesenchymal transition. Int Rev Cell Mol Biol. 2015; 317:185–239. PMID: 26008786.
Article
142. Sriram R, Lo V, Pryce B, Antonova L, Mears AJ, Daneshmand M, et al. Loss of periostin/OSF-2 in ErbB2/Neu-driven tumors results in androgen receptor-positive molecular apocrine-like tumors with reduced Notch1 activity. Breast Cancer Res. 2015; 17:7. PMID: 25592291.
Article
Full Text Links
  • JBC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr