1. Apivatthakakul T, Arpornchayanon O, Bavornratanavech S. Minimally invasive plate osteosynthesis (MIPO) of the humeral shaft fracture. Is it possible? A cadaveric study and preliminary report. Injury. 2005; 36:530–538.
Article
2. Baumgaertel F, Buhl M, Rahn BA. Fracture healing in biological plate osteosynthesis. Injury. 1998; 29:Suppl 3. C3–C6.
Article
3. Byun YS, Shin DJ, Chang SA, Kwon DY. Inlay fibular autograft and helical LCP fixation for a segmental comminuted fracture of the osteoporotic proximal humerus: a case report. J Korean Fract Soc. 2006; 19:100–103.
Article
4. Chang SA, Ahn HS, Byun YS, Kim JH, Bang HH, Kwon DY. Minimally invasive plate osteosynthesis in unstable fractures of the distal tibia. J Korean Fract Soc. 2005; 18:155–159.
Article
5. Cheal EJ, Mansmann KA, DiGioia AM 3rd, Hayes WC, Perren SM. Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy. J Orthop Res. 1991; 9:131–142.
Article
6. Collinge C, Sanders R, DiPasquale T. Treatment of complex tibial periarticular fractures using percutaneous techniques. Clin Orthop Relat Res. 2000; 375:69–77.
Article
7. Deangelis JP, Deangelis NA, Anderson R. Anatomy of the superficial peroneal nerve in relation to fixation of tibia fractures with the less invasive stabilization system. J Orthop Trauma. 2004; 18:536–539.
Article
8. Egol KA, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ. Biomechanics of locked plates and screws. J Orthop Trauma. 2004; 18:488–493.
Article
9. Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H. Minimally invasive plate osteosynthesis and vascularity: preliminary results of a cadaver injection study. Injury. 1997; 28:Suppl 1. A7–A12.
Article
10. Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H. Minimally invasive plate osteosynthesis: does percutaneous plating disrupt femoral blood supply less than the traditional technique? J Orthop Trauma. 1999; 13:401–406.
Article
11. Fernandez Dell'Oca AA. The principle of helical implants. Unusual ideas worth considering. Injury. 2002; 33:Suppl 1. SA1–SA27.
12. Frigg R. Development of the locking compression plate. Injury. 2003; 34:Suppl 2. B6–B10.
Article
13. Frigg R. Locking compression plate (LCP). An osteosynthesis plate based on the dynamic compression plate and the point contact fixator (PC-Fix). Injury. 2001; 32:Suppl 2. 63–66.
Article
14. Frigg R, Appenzeller A, Christensen R, Frenk A, Gilbert S, Schavan R. The development of the distal femur less invasive stabilization system. Injury. 2001; 32:Suppl 3. SC24–SC31.
15. Gautier E, Rahn BA, Perren SM. Vascular remodelling. Injury. 1995; 26:Suppl 2. 11–19.
Article
16. Gautier E, Sommer C. Guidelines for the clinical application of the LCP. Injury. 2003; 34:Suppl 2. B63–B76.
Article
17. Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br. 1985; 67:650–655.
Article
18. Kim JJ, Kim EG, Choi JW, Park SS. Prediction of rotationally neutral state of the femur by comparing with the shape of contra-lateral lesser trochanter. J Korean Orthop Assoc. 1999; 34:899–903.
Article
19. Kinast C, Bolhofner BR, Mast JW, Ganz R. Subtrochanteric fractures of the femur Results of treatment with the 95 degrees condylar blade-plate. Clin Orthop Relat Res. 1989; 238:122–130.
20. Krettek C, Miclau T, Grun O, Schandelmaier P, Tscherne H. Intraoperative control of axes, rotation and length in femoral and tibial fractures Technical note. Injury. 1998; 29:C29–C39.
Article
21. Krettek C, Miclau T, Stephan C, Tscherne H. Transarticular approach and retrograde plate osteosynthesis for complex distal intraarticular femur fractures. Techniques Orthop. 1999; 14:219–229.
Article
22. Krettek C, Rudolf J, Schandelmaier P, Guy P, Konemann B, Tscherne H. Unreamed intramedullary nailing of femoral shaft fractures: operative technique and early clinical experience with the standard locking option. Injury. 1996; 27:233–254.
Article
23. Krettek C, Schandelmaier P, Miclau T, Tscherne H. Minimally invasive percutaneous plate osteosynthesis (MIPPO) using the DCS in proximal and distal femoral factures. Injury. 1997; 28:Suppl 1. A20–A30.
24. Kubiak EN, Fulkerson E, Strauss E, Egol KA. The evolution of locked plates. J Bone Joint Surg Am. 2006; 88:Suppl 4. 189–200.
Article
25. Laurence M, Freeman MA, Swanson SA. Engineering considerations in the internal fixation of fractures of the tibial shaft. J Bone Joint Surg Br. 1969; 51:754–768.
Article
26. Mast J, Jacob R, Ganz R. Planning and reduction technique in fracture surgery. 1st ed. Berlin; Heidelberg; New York: Springer-Verlag;1989. p. 11–47. p. 48–129. p. 130–200.
27. Miclau T, Martin RE. The evolution of modern plate osteosynthesis. Injury. 1997; 28:Suppl 1. A3–A6.
Article
28. Oh CW. Treatment of complex distal tibial fractures. J Korean Fract Soc. 2005; 18:485–490.
Article
29. Perren SM. Backgrounds of the technology of internal fixators. Injury. 2003; 34:Suppl 2. B1–B3.
Article
30. Perren SM. Evolution and rationale of locked internal fixator technology. Introductory remarks. Injury. 2001; 32:Suppl 2. B3–B9.
31. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002; 84:1093–1110.
32. Perren SM. The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP). Scientific background, design and application. Injury. 1991; 22:Suppl 1. 1–41.
Article
33. Perren SM, Cordey J, Rahn BA, Gautier E, Schneider E. Early temporary porosis of bone induced by internal fixation implants. A reaction to necrosis, not to stress protection. Clin Orthop Relat Res. 1988; 232:139–151.
Article
34. Rahn BA, Gallinaro P, Baltensperger A, Perren SM. Primary bone healing. An experimental study in the rabbit. J Bone Joint Surg Am. 1971; 53:783–786.
35. Rozbruch RS, Muller U, Gautier E, Ganz R. The evolution of femoral shaft plating technique. Clin Orthop Relat Res. 1998; 354:195–208.
Article
36. Ruedi TP, Murphy WM. AO principles of fracture management. 1st ed. Stuttgart; New York: Thieme;2000. p. 7–31. p. 139–155. p. 169–184. p. 195–218. p. 221–230. p. 249–253. p. 290–305.
37. Schatzker J. Changes in the AO/ASIF principles and methods. Injury. 1995; 26:51–56.
Article
38. Schutz M, Muller M, Krettek C, et al. Minimally invasive fracture stabilization of distal femoral fractures with the LISS: a prospective multicenter study. Results of a clinical study with special emphasis on difficult cases. Injury. 2001; 32:Suppl 3. SC48–SC54.
Article
39. Stannard JP, Wilson TC, Volgas DA, Alonso JE. Fracture stabilization of proximal tibial fractures with the proximal tibial LISS: early experience in Birmingham, Alabama (USA). Injury. 2003; 34:Suppl 1. A36–A42.
Article
40. Stoffel K, Dieter U, Stachowiak G, Gachter A, Kuster MS. Biomechanical testing of the LCP - how can stability in locked internal fixators be controlled. Injury. 2003; 34:Suppl 2. B11–B19.
Article
41. Tepic S, Perren SM. The biomechanics of the PC-Fix internal fixator. Injury. 1995; 26:5–10.
Article
42. Tong GO, Bavonratanavech S. AO manual of fracture management. Minimally invasive plate osteosynthesis (MIPO). 1st ed. Stuttgart: Thieme;2007. p. 3–45. p. 66–118. p. 305–325.
43. Wagner M. General principles for the clinical use of the LCP. Injury. 2003; 34:Suppl 2. B31–B42.
Article
44. Yang KH, Han DY, Park SJ, Yoo HW. Spiral plate fixation for treatment of proximal humerus fracture. J Korean Orthop Assoc. 2000; 35:71–76.
Article