1. Pakhomov S. Semi-supervised Maximum Entropy based approach to acronym and abbreviation normalization in medical texts. In : Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (ACL2002); 2002 Jul 6-12; Philadelphia, PA. p. 160–167.
2. Stetson PD, Johnson SB, Scotch M, Hripcsak G. The sublanguage of cross-coverage. Proc AMIA Symp. 2002; 742–746.
3. Pakhomov S, Pedersen T, Chute CG. Abbreviation and acronym disambiguation in clinical discourse. AMIA Annu Symp Proc. 2005; 589–593.
4. Xu H, Markatou M, Dimova R, Liu H, Friedman C. Machine learning and word sense disambiguation in the biomedical domain: design and evaluation issues. BMC Bioinformatics. 2006; 5(7):334.
Article
5. Xu H, Stetson PD, Friedman C. A study of abbreviations in clinical notes. AMIA Annu Symp Proc. 2007; 821–825.
6. Kuhn IF. Abbreviations and acronyms in healthcare: when shorter isn't sweeter. Pediatr Nurs. 2007; 33:392–398.
7. Walsh KE, Gurwitz JH. Medical abbreviations: writing little and communicating less. Arch Dis Child. 2008; 93(10):816–817.
Article
8. Hunt DR, Verzier N, Abend SL, Lyder C, Jaser LJ, Safer N, et al. Fundamentals of medicare patient safety surveillance: intent, relevance, and transparency. In : Henriksen K, Battles JB, Marks ES, Lewin DI, editors. Advances in patient safety: from research to implementation (Volume 2: Concepts and Methodology). Rockville (MD): Agency for Healthcare Research and Quality;2005.
9. Fan JW, Friedman C. Word sense disambiguation via semantic type classification. AMIA Annu Symp Proc. 2008; 177–181.
10. Friedman C, Liu H, Shagina L, Johnson S, Hripcsak G. Evaluating the UMLS as a source of lexical knowledge for medical language processing. Proc AMIA Symp. 2001; 189–193.
11. Schuemie MJ, Kors JA, Mons B. Word sense disambiguation in the biomedical domain: an overview. J Comput Biol. 2005; 12:554–565.
Article
12. Kaplan A. An experimental study of ambiguity and context. Mech Transl. 1950; 2(2):39–46.
13. Choueka Y, Lusignan S. Disambiguation by short contexts. Comput Hum. 1985; 19(3):147–157.
Article
14. Joshi M, Pakhomov S, Pedersen T, Chute CG. A comparative study of supervised learning as applied to acronym expansion in clinical reports. AMIA Annu Symp Proc. 2006; 399–403.
15. Xu H, Stetson PD, Friedman C. Methods for building sense inventories of abbreviations in clinical notes. J Am Med Inform Assoc. 2009; 16(1):103–108.
Article
16. Savova GK, Coden AR, Sominsky IL, Johnson R, Ogren PV, de Groen PC, et al. Word sense disambiguation across two domains: biomedical literature and clinical notes. J Biomed Inform. 2008; 41(6):1088–1100.
Article
17. Manning CD, Schutze H. Foundations of statistical natural language processing. Cambridge (MA): MIT Press;1999.
18. Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proc AMIA Symp. 2001; 17–21.
19. McCray AT, Burgun A, Bodenreider O. Aggregating UMLS semantic types for reducing conceptual complexity. Stud Health Technol Inform. 2001; 84(Pt 1):216–220.
20. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. ACM SIGKDD Explor. 2009; 11(1):10–18.
21. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008; 128–144.
Article
23. University of Pittsburgh NLP Repository [Internet]. Pittsburgh (PA): Department of Biomedical Informatics, University of Pittsburgh;c2014. cited at 2015 Jan 5. Available from:
http://www.dbmi.pitt.edu/nlpfront.
24. Liu H, Lussier YA, Friedman C. A study of abbreviations in the UMLS. Proc AMIA Symp. 2001; 393–397.
25. Zhou W, Torvik VI, Smalheiser NR. ADAM: another database of abbreviations in MEDLINE. Bioinformatics. 2006; 22(22):2813–2818.
Article
26. Melton GB, Moon S, McInnes B, Pakhomov S. Automated identification of synonyms in biomedical acronym sense inventories. In : Proceedings of the NAACL HLT 2010 Second Louhi Workshop on Text and Data Mining of Health Documents; 2010 Jun 5; Los Angeles, CA. p. 46–52.
27. Resnik P, Yarowsky D. Distinguishing systems and distinguishing senses: new evaluation methods for word sense disambiguation. Nat Lang Eng. 1999; 5(2):113–133.
Article
28. Leroy G, Rindflesch TC. Using symbolic knowledge in the UMLS to disambiguate words in small datasets with a naïve Bayes classifier. Stud Health Technol Inform. 2004; 107(Pt 1):381–385.
29. Stevenson M, Guo Y, Amri AA, Gaizauskas R. Disambiguation of biomedical abbreviations. In : Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing (BioNLP); 2009 Jun 4-5; Boulder, CO. p. 71–79.
30. Liu H, Teller V, Friedman C. A multi-aspect comparison study of supervised word sense disambiguation. J Am Med Inform Assoc. 2004; 11(4):320–331.
Article