Allergy Asthma Immunol Res.  2013 Mar;5(2):68-74. 10.4168/aair.2013.5.2.68.

The Innate Immune Response in House Dust Mite-Induced Allergic Inflammation

Affiliations
  • 1Division of Allergy and Clinical Immunology, Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan. a122@mail.ncku.edu.tw

Abstract

Hypersensitivity to house dust mite (HDM; Dermatophagoides sp.) allergens is one of the most common allergic responses, affecting up to 85% of asthmatics. Sensitization to indoor allergens is the strongest independent risk factor associated with asthma. Additionally, >50% of children and adolescents with asthma are sensitized to HDM. Although allergen-specific CD4+ Th2 cells orchestrate the HDM allergic response through induction of IgE directed toward mite allergens, activation of innate immunity also plays a critical role in HDM-induced allergic inflammation. This review highlights the HDM components that lead to activation of the innate immune response. Activation may due to HDM proteases. Proteases may be recognized by protease-activation receptors (PARs), Toll-like receptors (TLRs), or C-type lectin receptors (CTRs), or act as a molecular mimic for PAMP activation signaling pathways. Understanding the role of mite allergen-induced innate immunity will facilitate the development of therapeutic strategies that exploit innate immunity receptors and associated signaling pathways for the treatment of allergic asthma.

Keyword

House dust mites; innate immunity; toll-like receptors; C-type lectin receptors; dendritic cells

MeSH Terms

Adolescent
Allergens
Asthma
Child
Dendritic Cells
Dust
Humans
Hydrazines
Hypersensitivity
Immunity, Innate
Immunoglobulin E
Inflammation
Lectins, C-Type
Mites
Peptide Hydrolases
Pyroglyphidae
Risk Factors
Th2 Cells
Toll-Like Receptors
Allergens
Dust
Hydrazines
Immunoglobulin E
Lectins, C-Type
Peptide Hydrolases
Toll-Like Receptors

Figure

  • Fig. 1 The distributions of house dust mites, Der p, Der f, and Blot in the counties of Taiwan. Red shading indicates the prevalence of childhood asthma as determined by ISSAC.

  • Fig. 2 Activation of innate immune cells and the cell surface receptors; toll-like receptor 4 (TLR4), protease activation receptor 2 (PAR2), and C-type lectin receptor (CTR), by house dust mite (HDM) allergens in airway epithelium.

  • Fig. 3 The role of DCs and DC-SIGN in HDM allergy. Decreased expression of DC-SIGN and more immature phenotypes in MDDCs from Der p-sensitive asthmatic patients may partially explain the enhancement of the Th2 response associated with HDM-related allergies. In addition, Der p can modulate differentiation and maturation of monocyte-derived DCs through DC-SIGN binding and downregulation of its expression, which may result in an aletred polarization activity, leading to the Th2 cytokine immune response.


Reference

1. Dekker H. Asthma and Milben. Munch Med Wochenschr. 1928. 515–516. (translated by Dekker H. Asthma and mites. J Allergy Clin Immunology 1971;48:251-2).
2. Kern RA. Dust sensitization in bronchial asthma. Med Clin North Am. 1921. 5:751–758.
3. Vannier WE, Campbell DH. A starch block electrophoresis study of aqueous house dust extracts. J Allergy. 1961. 32:36–54.
4. Voorhorst R, Spieksma FM, Varekamp H, Leupen MJ, Lyklema AW. The house dust mite (Dermatophagoides pteronyssinus) and the allergen it produces: identify with house dust allergen. J Allergy. 1967. 39:325–339.
5. Thomas WR, Smith WA, Hales BJ. The allergenic specificities of the house dust mite. Chang Gung Med J. 2004. 27:563–569.
6. Shin JW, Sue JH, Song TW, Kim KW, Kim ES, Sohn MH, Kim KE. Atopy and house dust mite sensitization as risk factors for asthma in children. Yonsei Med J. 2005. 46:629–634.
7. Miraglia Del Giudice M, Pedullà M, Piacentini GL, Capristo C, Brunese FP, Decimo F, Maiello N, Capristo AF. Atopy and house dust mite sensitization as risk factors for asthma in children. Allergy. 2002. 57:169–172.
8. Tovey ER, Chapman MD, Platts-Mills TA. Mite faeces are a major source of house dust allergens. Nature. 1981. 289:592–593.
9. Boulet LP, Turcotte H, Laprise C, Lavertu C, Bédard PM, Lavoie A, Hébert J. Comparative degree and type of sensitization to common indoor and outdoor allergens in subjects with allergic rhinitis and/or asthma. Clin Exp Allergy. 1997. 27:52–59.
10. Thomas WR, Smith WA, Hales BJ, Mills KL, O'Brien RM. Characterization and immunobiology of house dust mite allergens. Int Arch Allergy Immunol. 2002. 129:1–18.
11. Gaffin JM, Phipatanakul W. The role of indoor allergens in the development of asthma. Curr Opin Allergy Clin Immunol. 2009. 9:128–135.
12. Wang JY, Chen WY. Inhalant allergens in asthmatic children in Taiwan: comparison evaluation of skin testing, radioallergosorbent test and multiple allergosorbent chemiluminescent assay for specific IgE. J Formos Med Assoc. 1992. 91:1127–1132.
13. Cates EC, Fattouh R, Johnson JR, Llop-Guevara A, Jordana M. Modeling responses to respiratory house dust mite exposure. Contrib Microbiol. 2007. 14:42–67.
14. Heinzerling LM, Burbach GJ, Edenharter G, Bachert C, Bindslev-Jensen C, Bonini S, Bousquet J, Bousquet-Rouanet L, Bousquet PJ, Bresciani M, Bruno A, Burney P, Canonica GW, Darsow U, Demoly P, Durham S, Fokkens WJ, Giavi S, Gjomarkaj M, Gramiccioni C, Haahtela T, Kowalski ML, Magyar P, Muraközi G, Orosz M, Papadopoulos NG, Röhnelt C, Stingl G, Todo-Bom A, von Mutius E, Wiesner A, Wöhrl S, Zuberbier T. GA(2)LEN skin test study I: GA(2)LEN harmonization of skin prick testing: novel sensitization patterns for inhalant allergens in Europe. Allergy. 2009. 64:1498–1506.
15. Arbes SJ Jr, Gergen PJ, Elliott L, Zeldin DC. Prevalences of positive skin test responses to 10 common allergens in the US population: results from the third National Health and Nutrition Examination Survey. J Allergy Clin Immunol. 2005. 116:377–383.
16. Leung R, Ho P. Asthma, allergy, and atopy in three south-east Asian populations. Thorax. 1994. 49:1205–1210.
17. Li J, Sun B, Huang Y, Lin X, Zhao D, Tan G, Wu J, Zhao H, Cao L, Zhong N. China Alliance of Research on Respiratory Allergic Disease. A multicentre study assessing the prevalence of sensitizations in patients with asthma and/or rhinitis in China. Allergy. 2009. 64:1083–1092.
18. Fernández-Caldas E, Baena-Cagnani CE, López M, Patiño C, Neffen HE, Sánchez-Medina M, Caraballo LR, Huerta López J, Malka S, Naspitz CK. Cutaneous sensitivity to six mite species in asthmatic patients from five Latin American countries. J Investig Allergol Clin Immunol. 1993. 3:245–249.
19. Sears MR, Burrows B, Herbison GP, Holdaway MD, Flannery EM. Atopy in childhood. II. Relationship to airway responsiveness, hay fever and asthma. Clin Exp Allergy. 1993. 23:949–956.
20. Peat JK, Tovey E, Toelle BG, Haby MM, Gray EJ, Mahmic A, Woolcock AJ. House dust mite allergens. A major risk factor for childhood asthma in Australia. Am J Respir Crit Care Med. 1996. 153:141–146.
21. Perzanowski MS, Ng'ang'a LW, Carter MC, Odhiambo J, Ngari P, Vaughan JW, Chapman MD, Kennedy MW, Platts-Mills TA. Atopy, asthma, and antibodies to Ascaris among rural and urban children in Kenya. J Pediatr. 2002. 140:582–588.
22. Addo-Yobo EO, Custovic A, Taggart SC, Craven M, Bonnie B, Woodcock A. Risk factors for asthma in urban Ghana. J Allergy Clin Immunol. 2001. 108:363–368.
23. Thomas WR. Geography of house dust mite allergens. Asian Pac J Allergy Immunol. 2010. 28:211–224.
24. Tsai JJ, Yi FC, Chua KY, Liu YH, Lee BW, Cheong N. Identification of the major allergenic components in Blomia tropicalis and the relevance of the specific IgE in asthmatic patients. Ann Allergy Asthma Immunol. 2003. 91:485–489.
25. Jacquet A. The role of the house dust mite-induced innate immunity in development of allergic response. Int Arch Allergy Immunol. 2011. 155:95–105.
26. Thomas WR, Hales BJ, Smith WA. House dust mite allergens in asthma and allergy. Trends Mol Med. 2010. 16:321–328.
27. Chen CL, Lee CT, Liu YC, Wang JY, Lei HY, Yu CK. House dust mite Dermatophagoides farinae augments proinflammatory mediator productions and accessory function of alveolar macrophages: implications for allergic sensitization and inflammation. J Immunol. 2003. 170:528–536.
28. Yu CK, Chen CL. Activation of mast cells is essential for development of house dust mite Dermatophagoides farinae-induced allergic airway inflammation in mice. J Immunol. 2003. 171:3808–3815.
29. Cunningham PT, Elliot CE, Lenzo JC, Jarnicki AG, Larcombe AN, Zosky GR, Holt PG, Thomas WR. Sensitizing and th2 adjuvant activity of cysteine protease allergens. Int Arch Allergy Immunol. 2012. 158:347–358.
30. Stewart GA, Boyd SM, Bird CH, Krska KD, Kollinger MR, Thompson PJ. Immunobiology of the serine protease allergens from house dust mites. Am J Ind Med. 1994. 25:105–107.
31. Chapman MD, Wünschmann S, Pomés A. Proteases as Th2 adjuvants. Curr Allergy Asthma Rep. 2007. 7:363–367.
32. Kalsheker NA, Deam S, Chambers L, Sreedharan S, Brocklehurst K, Lomas DA. The house dust mite allergen Der p1 catalytically inactivates alpha 1-antitrypsin by specific reactive centre loop cleavage: a mechanism that promotes airway inflammation and asthma. Biochem Biophys Res Commun. 1996. 221:59–61.
33. Wang JY, Kishore U, Lim BL, Strong P, Reid KB. Interaction of human lung surfactant proteins A and D with mite (Dermatophagoides pteronyssinus) allergens. Clin Exp Immunol. 1996. 106:367–373.
34. Wang JY, Shieh CC, You PF, Lei HY, Reid KB. Inhibitory effect of pulmonary surfactant proteins A and D on allergen-induced lymphocyte proliferation and histamine release in children with asthma. Am J Respir Crit Care Med. 1998. 158:510–518.
35. Wang JY, Reid KB. The immunoregulatory roles of lung surfactant collectins SP-A, and SP-D, in allergen-induced airway inflammation. Immunobiology. 2007. 212:417–425.
36. Deb R, Shakib F, Reid K, Clark H. Major house dust mite allergens Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1 degrade and inactivate lung surfactant proteins A and D. J Biol Chem. 2007. 282:36808–36819.
37. Wan H, Winton HL, Soeller C, Taylor GW, Gruenert DC, Thompson PJ, Cannell MB, Stewart GA, Garrod DR, Robinson C. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy. 2001. 31:279–294.
38. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, Robinson C. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest. 1999. 104:123–133.
39. Maneechotesuwan K, Wamanuttajinda V, Kasetsinsombat K, Huabprasert S, Yaikwawong M, Barnes PJ, Wongkajornsilp A. Der p 1 suppresses indoleamine 2, 3-dioxygenase in dendritic cells from house dust mite-sensitive patients with asthma. J Allergy Clin Immunol. 2009. 123:239–248.
40. Gregory LG, Lloyd CM. Orchestrating house dust mite-associated allergy in the lung. Trends Immunol. 2011. 32:402–411.
41. Reed CE, Kita H. The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol. 2004. 114:997–1008. quiz 1009.
42. Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther. 2011. 130:248–282.
43. Chen CL, Wang SD, Zeng ZY, Lin KJ, Kao ST, Tani T, Yu CK, Wang JY. Serine protease inhibitors nafamostat mesilate and gabexate mesilate attenuate allergen-induced airway inflammation and eosinophilia in a murine model of asthma. J Allergy Clin Immunol. 2006. 118:105–112.
44. Dai YC, Chuang WJ, Chua KY, Shieh CC, Wang JY. Epitope mapping and structural analysis of the anti-Der p 1 monoclonal antibody: insight into therapeutic potential. J Mol Med (Berl). 2011. 89:701–712.
45. Phipps S, Lam CE, Kaiko GE, Foo SY, Collison A, Mattes J, Barry J, Davidson S, Oreo K, Smith L, Mansell A, Matthaei KI, Foster PS. Toll/IL-1 signaling is critical for house dust mite-specific helper T cell type 2 and type 17 [corrected] responses. Am J Respir Crit Care Med. 2009. 179:883–893.
46. Marichal T, Bedoret D, Mesnil C, Pichavant M, Goriely S, Trottein F, Cataldo D, Goldman M, Lekeux P, Bureau F, Desmet CJ. Interferon response factor 3 is essential for house dust mite-induced airway allergy. J Allergy Clin Immunol. 2010. 126:836–844.e13.
47. Liu CF, Chen YL, Chang WT, Shieh CC, Yu CK, Reid KB, Wang JY. Mite allergen induces nitric oxide production in alveolar macrophage cell lines via CD14/toll-like receptor 4, and is inhibited by surfactant protein D. Clin Exp Allergy. 2005. 35:1615–1624.
48. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 2009. 15:410–416.
49. Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, Madan R, Thorne PS, Wills-Karp M, Gioannini TL, Weiss JP, Karp CL. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature. 2009. 457:585–588.
50. Chiou YL, Lin CY. Der p2 activates airway smooth muscle cells in a TLR2/MyD88-dependent manner to induce an inflammatory response. J Cell Physiol. 2009. 220:311–318.
51. Ye YL, Wu HT, Lin CF, Hsieh CY, Wang JY, Liu FH, Ma CT, Bei CH, Cheng YL, Chen CC, Chiang BL, Tsao CW. Dermatophagoides pteronyssinus 2 regulates nerve growth factor release to induce airway inflammation via a reactive oxygen species-dependent pathway. Am J Physiol Lung Cell Mol Physiol. 2011. 300:L216–L224.
52. Kuipers H, Lambrecht BN. The interplay of dendritic cells, Th2 cells and regulatory T cells in asthma. Curr Opin Immunol. 2004. 16:702–708.
53. MacDonald AS, Maizels RM. Alarming dendritic cells for Th2 induction. J Exp Med. 2008. 205:13–17.
54. Gazi U, Martinez-Pomares L. Influence of the mannose receptor in host immune responses. Immunobiology. 2009. 214:554–561.
55. Royer PJ, Emara M, Yang C, Al-Ghouleh A, Tighe P, Jones N, Sewell HF, Shakib F, Martinez-Pomares L, Ghaemmaghami AM. The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity. J Immunol. 2010. 185:1522–1531.
56. Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G, Yoo S, Burks AW, Sampson HA. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J Immunol. 2006. 177:3677–3685.
57. Huang HJ, Lin YL, Liu CF, Kao HF, Wang JY. Mite allergen decreases DC-SIGN expression and modulates human dendritic cell differentiation and function in allergic asthma. Mucosal Immunol. 2011. 4:519–527.
58. Ghaemmaghami AM, Gough L, Sewell HF, Shakib F. The proteolytic activity of the major dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced Th2 bias determined at the dendritic cell level. Clin Exp Allergy. 2002. 32:1468–1475.
59. Furmonaviciene R, Ghaemmaghami AM, Boyd SE, Jones NS, Bailey K, Willis AC, Sewell HF, Mitchell DA, Shakib F. The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses. Clin Exp Allergy. 2007. 37:231–242.
Full Text Links
  • AAIR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr