1. Burgoyne CF, Downs JC. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma. 2008. 17:318–328.
2. Chauhan BC. Endothelin and its potential role in glaucoma. Can J Ophthalmol. 2008. 43:356–360.
3. Allingham R, Damji KF, Freedman S, et al. Allingham RR, Damji KF, Freedman S, editors. Optic nerve, retina, and choroid. Shields' Textbook of Glaucoma. 2011. 6th ed. Philadelphia: Lippincott Williams & Wilkins;chap. 4.
4. Burgoyne CF, Quigley HA, Thompson HW, et al. Early changes in optic disc compliance and surface position in experimental glaucoma. Ophthalmology. 1995. 102:1800–1809.
5. Burgoyne CF, Morrison JC. The anatomy and pathophysiology of the optic nerve head in glaucoma. J Glaucoma. 2001. 10:5 Suppl 1. S16–S18.
6. Quigley HA, Brown A, Dorman-Pease ME. Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br J Ophthalmol. 1991. 75:552–557.
7. Quigley HA, Guy J, Anderson DR. Blockade of rapid axonal transport. Effect of intraocular pressure elevation in primate optic nerve. Arch Ophthalmol. 1979. 97:525–531.
8. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002. 120:714–720. discussion 829-30.
9. Burgoyne CF, Downs JC, Bellezza AJ, et al. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005. 24:39–73.
10. Bayraktar S, Bayraktar Z. Central corneal thickness and intraocular pressure relationship in eyes with and without previous LASIK: comparison of Goldmann applanation tonometer with pneumatonometer. Eur J Ophthalmol. 2005. 15:81–88.
11. Doughty MJ, Zaman ML. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol. 2000. 44:367–408.
12. Allingham R, Damji KF, Freedman S, et al. Allingham R, Damji KF, Freedman S, editors. Intraocular pressure and tonometry. Shields' Textbook of Glaucoma. 2011. 6th ed. Philadelphia: Lippincott Williams & Wilkins Wilkins;chap. 2.
13. Wolfs RC, Klaver CC, Vingerling JR, et al. Distribution of central corneal thickness and its association with intraocular pressure: The Rotterdam Study. Am J Ophthalmol. 1997. 123:767–772.
14. Herndon LW, Weizer JS, Stinnett SS. Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol. 2004. 122:17–21.
15. Medeiros FA, Sample PA, Weinreb RN. Corneal thickness measurements and frequency doubling technology perimetry abnormalities in ocular hypertensive eyes. Ophthalmology. 2003. 110:1903–1908.
16. Medeiros FA, Sample PA, Weinreb RN. Corneal thickness measurements and visual function abnormalities in ocular hypertensive patients. Am J Ophthalmol. 2003. 135:131–137.
17. Xu L, Zhang H, Wang YX, Jonas JB. Central corneal thickness and glaucoma in adult Chinese: the Beijing Eye Study. J Glaucoma. 2008. 17:647–653.
18. Kaushik S, Gyatsho J, Jain R, et al. Correlation between retinal nerve fiber layer thickness and central corneal thickness in patients with ocular hypertension: an optical coherence tomography study. Am J Ophthalmol. 2006. 141:884–890.
19. Henderson PA, Medeiros FA, Zangwill LM, Weinreb RN. Relationship between central corneal thickness and retinal nerve fiber layer thickness in ocular hypertensive patients. Ophthalmology. 2005. 112:251–256.
20. Mumcuoglu T, Townsend KA, Wollstein G, et al. Assessing the relationship between central corneal thickness and retinal nerve fiber layer thickness in healthy subjects. Am J Ophthalmol. 2008. 146:561–566.
21. Pakravan M, Parsa A, Sanagou M, Parsa CF. Central corneal thickness and correlation to optic disc size: a potential link for susceptibility to glaucoma. Br J Ophthalmol. 2007. 91:26–28.
22. Kourkoutas D, Georgopoulos G, Maragos A, et al. New nonlinear multivariable model shows the relationship between central corneal thickness and HRTII topographic parameters in glaucoma patients. Clin Ophthalmol. 2009. 3:313–323.
23. Abe H, Shirakashi M, Tsutsumi T, et al. Laser scanning tomography of optic discs of the normal Japanese population in a population-based setting. Ophthalmology. 2009. 116:223–230.
24. Wu RY, Zheng YF, Wong TY, et al. Relationship of central corneal thickness with optic disc parameters: the Singapore Malay Eye Study. Invest Ophthalmol Vis Sci. 2011. 52:1320–1324.
25. Mesiwala NK, Pekmezci M, Porco TC, Lin SC. Optic disc parameters from optovue optical coherence tomography: comparison of manual versus automated disc rim determination. J Glaucoma. 2011. 04. 25. [Epub ahead of print].
26. Wollstein G, Kagemann L, Bilonick RA, et al. Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point. Br J Ophthalmol. 2012. 96:47–52.
27. Savini G, Carbonelli M, Parisi V, Barboni P. Repeatability of optic nerve head parameters measured by spectral-domain OCT in healthy eyes. Ophthalmic Surg Lasers Imaging. 2011. 42:209–215.
28. Sharma A, Oakley JD, Schiffman JC, et al. Comparison of automated analysis of Cirrus HD OCT spectral-domain optical coherence tomography with stereo photographs of the optic disc. Ophthalmology. 2011. 118:1348–1357.
29. Abràmoff MD, Lee K, Niemeijer M, et al. Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head. Invest Ophthalmol Vis Sci. 2009. 50:5778–5784.
30. Sung KR, Kim JS, Wollstein G, et al. Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol. 2011. 95:909–914.
31. Leske MC, Heijl A, Hyman L, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007. 114:1965–1972.
32. Sung KR, Kim DY, Nam YP. Relationship between central corneal thickness and retinal nerve fiber layer thickness in glaucomatous subject. J Korean Ophthalmol Soc. 2009. 50:418–423.
33. Schuman JS. Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans Am Ophthalmol Soc. 2008. 106:426–458.
34. Leung CK, Cheung CY, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009. 116:1257–1263. 1263.e1–1263.e2.
35. Gramer E, Althaus G, Leydhecker W. [Site and depth of glaucomatous visual field defects in relation to the size of the neuroretinal edge zone of the optic disk in glaucoma without hypertension, simple glaucoma, pigmentary glaucoma. A clinical study with the Octopus perimeter 201 and the optic nerve head analyzer]. Klin Monbl Augenheilkd. 1986. 189:190–198.
36. Girkin CA, Liebmann J, Fingeret M, et al. The effects of race, optic disc area, age, and disease severity on the diagnostic performance of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011. 52:6148–6153.
37. Oddone F, Centofanti M, Tanga L, et al. Influence of disc size on optic nerve head versus retinal nerve fiber layer assessment for diagnosing glaucoma. Ophthalmology. 2011. 118:1340–1347.
38. Sung KR, Na JH, Lee Y, et al. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by cirrus HD optical coherence tomography. J Glaucoma. 2011. 06. 01. [Epub ahead of print].
39. Qiu KL, Zhang MZ, Leung CK, et al. Diagnostic classification of retinal nerve fiber layer measurement in myopic eyes: a comparison between time-domain and spectral-domain optical coherence tomography. Am J Ophthalmol. 2011. 152:646–653.
40. Shak AA , Malakhanova MK, Ogorodnikova SN. [Evaluation of stereometric parameters of optic disc and nerve fiber layer using HRT II. Report 3: measurement error of spectral-domain optical coherence tomography compared with Heidelberg retinal tomograph III]. Vestn Oftalmol. 2011. 127:46–49.
41. Gunvant P, Porsia L, Watkins RJ, et al. Relationships between central corneal thickness and optic disc topography in eyes with glaucoma, suspicion of glaucoma, or ocular hypertension. Clin Ophthalmol. 2008. 2:591–599.
42. Jonas JB, Holbach L. Central corneal thickness and thickness of the lamina cribrosa in human eyes. Invest Ophthalmol Vis Sci. 2005. 46:1275–1279.
43. Ren R, Li B, Gao F, et al. Central corneal thickness, lamina cribrosa and peripapillary scleral histomorphometry in non-glaucomatous Chinese eyes. Graefes Arch Clin Exp Ophthalmol. 2010. 248:1579–1585.
44. Ha SG, Kim YY. Relationship between central corneal thickness and scleral thickness in Korean glaucomatous patients. J Korean Ophthalmol Soc. 2010. 51:1485–1490.
45. Kim JM, Park KH, Kim SH, et al. The relationship between the cornea and the optic disc. Eye (Lond). 2010. 24:1653–1657.