1. Diabetic Retinopathy Clinical Research Network. Browning DJ, Glassman AR. . Relationship between optical coherence to-mography-measured central retinal thickness and visual acuity in diabetic macular edema. Ophthalmology. 2007; 114:525–36.
2. Alasil T, Keane PA, Updike JF. . Relationship between optical coherence tomography retinal parameters and visual acuity in dia-betic macular edema. Ophthalmology. 2010; 117:2379–86.
Article
3. Uji A, Murakami T, Nishijima K. . Association between hyper-reflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol. 2012; 153:710–7. 717.e1.
Article
4. Sakamoto A, Nishijima K, Kita M. . Association between fo-veal photoreceptor status and visual acuity after resolution of dia-betic macular edema by pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol. 2009; 247:1325–30.
Article
5. Takahashi H, Goto T, Shoji T. . Diabetes-associated retinal nerve fiber damage evaluated with scanning laser polarimetry. Am J Ophthalmol. 2006; 142:88–94.
Article
6. Sugimoto M, Sasoh M, Ido M. . Detection of early diabetic change with optical coherence tomography in type 2 diabetes mel-litus patients without retinopathy. Ophthalmologica. 2005; 219:379–85.
Article
7. van Dijk HW, Verbraak FD, Kok PH. . Decreased retinal gan-glion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010; 51:3660–5.
Article
8. Pierro L, Gagliardi M, Iuliano L. . Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments. Invest Ophthalmol Vis Sci. 2012; 53:5912–20.
Article
9. Mwanza JC, Durbin MK, Budenz DL. . Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011; 52:7872–9.
Article
10. Massin P, Audren F, Haouchine B. . Intravitreal triamcinolone acetonide for diabetic diffuse macular edema: preliminary results of a prospective controlled trial. Ophthalmology. 2004; 111:218–24.
11. Yanoff M, Fine BS, Brucker AJ, Eagle RC Jr. Pathology of human cystoid macular edema. Surv Ophthalmol 1984;28 Suppl. 505–11.
Article
12. Shin HJ, Lee SH, Chung H, Kim HC. Association between photo-receptor integrity and visual outcome in diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2012; 250:61–70.
Article
13. Murakami T, Nishijima K, Akagi T. . Segmentational analysis of retinal thickness after vitrectomy in diabetic macular edema. Invest Ophthalmol Vis Sci. 2012; 53:6668–74.
Article
14. Pelosini L, Hull CC, Boyce JF. . Optical coherence tomog-raphy may be used to predict visual acuity in patients with macular edema. Invest Ophthalmol Vis Sci. 2011; 52:2741–8.
Article
15. Sung MS, Yoon JH, Park SW. Diagnostic validity of macular gan-glion cell-inner plexiform layer thickness deviation map algorithm using cirrus HD-OCT in preperimetric and early glaucoma. J Glaucoma. 2014; 23:e144–51.
Article
16. Park KA, Park DY, Oh SY. Analysis of spectral-domain optical co-herence tomography measurements in amblyopia: a pilot study. Br J Ophthalmol. 2011; 95:1700–6.
Article
17. Zhang L, Ino-ue M, Dong K, Yamamoto M. Retrograde axonal transport impairment of large- and medium-sized retinal ganglion cells in diabetic rat. Curr Eye Res. 2000; 20:131–6.
Article
18. Park HY, Kim IT, Park CK. Early diabetic changes in the nerve fi-bre layer at the macula detected by spectral domain optical coher-ence tomography. Br J Ophthalmol. 2011; 95:1223–8.
Article
19. Kim JT, Lee JK, Moon NJ, Cho HK. Analysis of the optic nerve head and RNFL thickness using optical coherence tomography in diabetes. J Korean Ophthalmol Soc. 2008; 49:935–41.
Article
20. Hwang DJ, Lee EJ, Lee SY. . Effect of diabetic macular edema on peripapillary retinal nerve fiber layer thickness profiles. Invest Ophthalmol Vis Sci. 2014; 55:4213–9.
Article
21. Takayama K, Hangai M, Durbin M. . A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012; 53:6904–13.
Article
22. Howell SJ, Mekhail MN, Azem R. . Degeneration of retinal ganglion cells in diabetic dogs and mice: relationship to glycemic control and retinal capillary degeneration. Mol Vis. 2013; 19:1413–21.
23. Chung HS, Harris A, Halter PJ. . Regional differences in retinal vascular reactivity. Invest Ophthalmol Vis Sci. 1999; 40:2448–53.
24. Jonas JB, Naumann GO. Parapapillary retinal vessel diameter in normal and glaucoma eyes. II. Correlations. Invest Ophthalmol Vis Sci. 1989; 30:1604–11.
25. Königsreuther KA, Jonas JB. Optic disc morphology in diabetes mellitus. Graefes Arch Clin Exp Ophthalmol. 1995; 233:200–4.
Article
26. Kanamori A, Escano MF, Eno A. . Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical co-herence tomography. Ophthalmologica. 2003; 217:273–8.
Article
27. Tilton RG, Chang KC, LeJeune WS. . Role for nitric oxide in the hyperpermeability and hemodynamic changes induced by in-travenous VEGF. Invest Ophthalmol Vis Sci. 1999; 40:689–96.
28. Foxton RH, Finkelstein A, Vijay S. . VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol. 2013; 182:1379–90.
Article
29. Tatlipinar S, Dinç UA, Yenerel NM, Görgün E. Short-term effects of a single intravitreal bevacizumab injection on retinal vessel calibre. Clin Exp Optom. 2012; 95:94–8.
Article
30. Goel N, Kumar V, Ghosh B. Ischemic maculopathy following in-travitreal bevacizumab for refractory diabetic macular edema. Int Ophthalmol. 2011; 31:39–42.
Article
31. Kim HY, Cho HK. Peripapillary retinal nerve fiber layer thickness change after panretinal photocoagulation in patients with diabetic retinopathy. Korean J Ophthalmol. 2009; 23:23–6.
Article
32. Muqit MM, Wakely L, Stanga PE. . Effects of conventional ar-gon panretinal laser photocoagulation on retinal nerve fibre layer and driving visual fields in diabetic retinopathy. Eye (Lond). 2010; 24:1136–42.
Article