1. Boucher M, Leone J, Pierrynowski M, Bhandari M. Three-dimensional assessment of tibial malunion after intramedullary nailing: a preliminary study. J Orthop Trauma. 2002; 16:473–483.
Article
2. Compte P, Straumann F. In : Perren SM, Schneider E, editors. Influence of unoccupied holes on the fatigue behavior of bone fixation plates. Proceedings of the European Society of Biomechanics. Current Interdisciplinary Research; Amsterdam: Martinus Nijhoff;1985. p. 459–464.
3. Ellis T, Bourgeault CA, Kyle RF. Screw position affects dynamic compression plate strain in an in vitro fracture model. J Orthop Trauma. 2001; 15:333–337.
Article
4. Gautier E, Perren SM. Limited contact dynamic compression plate (LC-DCP)- biomechanical research as basis to new plate design. Orthopade. 1992; 21:11–23.
5. Gerber C, Mast JW, Ganz R. Biological internal fixation of fractures. Arch Orthop Trauma Surg. 1990; 109:295–303.
Article
6. Kowalski MJ, Schemitsch EH, Harrington RM, Chapman JR, Swiontkowski MF. A comparative biomechanical evaluation of a noncontacting plate and currently used devices for tibial fixation. J Trauma. 1996; 40:5–9.
Article
7. Perren SM. The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP). Scientific background, design and application. Injury. 1991; 22:Suppl 1. 1–41.
Article
8. Sanders R, Haidukewych GJ, Milne T, Dennis J, Latta LL. Minimal versus maximal plate fixation techniques of the ulna: the biomechanical effect of number of screws and plate length. J Orthop Trauma. 2002; 16:166–171.
Article
9. Stoffel K, Dieter U, Stachowiak G, Gächter A, Kuster MS. Biomechanical testing of the LCP-how can stability in locked internal fixators be controlled? Injury. 2003; 34:Suppl 2. B11–B19.
10. Törnkvist H, Hearn TC, Schatzker J. The strength of plate fixation in relation to the number and spacing of bone screws. J Orthop Trauma. 1996; 10:204–208.
Article