J Clin Neurol.  2015 Jan;11(1):9-19. 10.3988/jcn.2015.11.1.9.

Oral Disease-Modifying Therapies for Multiple Sclerosis

Affiliations
  • 1Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea.
  • 2Pontifical Catholic University of Rio Grande do Sul, Science Without Borders, Porto Alegre, Brazil.
  • 3Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea. hojinkim@ncc.re.kr

Abstract

Classical multiple sclerosis (MS) treatments using first-line injectable drugs, although widely applied, remain a major concern in terms of therapeutic adherence and efficacy. New oral drugs recently approved for MS treatment represent significant advances in therapy. The oral route of administration clearly promotes patient satisfaction and increases therapeutic compliance. However, these drugs may also have safety and tolerability issues, and a thorough analysis of the risks and benefits is required. Three oral drugs have been approved by regulatory agencies for MS treatment: fingolimod, teriflunomide, and dimethyl fumarate. This article reviews the mechanisms of action, safety, and efficacy of these drugs and two other drugs that have yielded positive results in phase III trials: cladribine and laquinimod.

Keyword

multiple sclerosis; oral drug; clinical trial; treatment

MeSH Terms

Cladribine
Compliance
Dimethyl Fumarate
Fingolimod Hydrochloride
Multiple Sclerosis*
Patient Satisfaction
Risk Assessment
Cladribine

Reference

1. Fujita T, Inoue K, Yamamoto S, Ikumoto T, Sasaki S, Toyama R, et al. Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J Antibiot (Tokyo). 1994; 47:208–215.
Article
2. Massberg S, von Andrian UH. Fingolimod and sphingosine-1-phosphate--modifiers of lymphocyte migration. N Engl J Med. 2006; 355:1088–1091.
Article
3. Schwab SR, Cyster JG. Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol. 2007; 8:1295–1301.
Article
4. Dev KK, Mullershausen F, Mattes H, Kuhn RR, Bilbe G, Hoyer D, et al. Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol Ther. 2008; 117:77–93.
Article
5. Mehling M, Brinkmann V, Antel J, Bar-Or A, Goebels N, Vedrine C, et al. FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology. 2008; 71:1261–1267.
Article
6. Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem. 2002; 277:21453–21457.
Article
7. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002; 296:346–349.
Article
8. Brinkmann V, Cyster JG, Hla T. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant. 2004; 4:1019–1025.
Article
9. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004; 427:355–360.
Article
10. Killestein J, Rudick RA, Polman CH. Oral treatment for multiple sclerosis. Lancet Neurol. 2011; 10:1026–1034.
Article
11. Cohen JA, Chun J. Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Ann Neurol. 2011; 69:759–777.
Article
12. Conway D, Cohen JA. Emerging oral therapies in multiple sclerosis. Curr Neurol Neurosci Rep. 2010; 10:381–388.
Article
13. Kappos L, Antel J, Comi G, Montalban X, O'Connor P, Polman CH, et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med. 2006; 355:1124–1140.
Article
14. O'Connor P, Comi G, Montalban X, Antel J, Radue EW, de Vera A, et al. Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a phase II extension study. Neurology. 2009; 72:73–79.
15. Comi G, O'Connor P, Montalban X, Antel J, Radue EW, Karlsson G, et al. Phase II study of oral fingolimod (FTY720) in multiple sclerosis: 3-year results. Mult Scler. 2010; 16:197–207.
Article
16. Kira J, Itoyama Y, Kikuchi S, Hao Q, Kurosawa T, Nagato K, et al. Fingolimod (FTY720) therapy in Japanese patients with relapsing multiple sclerosis over 12 months: results of a phase 2 observational extension. BMC Neurol. 2014; 14:21.
Article
17. Izquierdo G, O'Connor P, Montalban X, von Rosenstiel P, Cremer M, de Vera A, et al. Five-year results from a phase 2 study of oral fingolimod in relapsing multiple sclerosis. Mult Scler. 2014; 20:877–881.
Article
18. Kappos L, Radue EW, O'Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010; 362:387–401.
Article
19. Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010; 362:402–415.
Article
20. Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014; 13:545–556.
Article
21. Miller D, Cree B, Dalton C, Freedman M, Hartung H, Kappos L, et al. Study design and baseline characteristics of the INFORMS study: fingolimod in patients with primary progressive multiple sclerosis (P07. 116). Neurology. 2013; 80:P07.116.
22. Gold R, Comi G, Palace J, Siever A, Gottschalk R, Bijarnia M, et al. Assessment of cardiac safety during fingolimod treatment initiation in a real-world relapsing multiple sclerosis population: a phase 3b, open-label study. J Neurol. 2014; 261:267–276.
Article
23. Koyrakh L, Roman MI, Brinkmann V, Wickman K. The heart rate decrease caused by acute FTY720 administration is mediated by the G protein-gated potassium channel I. Am J Transplant. 2005; 5:529–536.
Article
24. European Medicines Agency (GB). Annex I. Summary of product characteristics [Internet]. London: European Medicines Agency;2011. cited 2014 Jul 21. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002202/WC500104528.pdf.
25. European Medicines Agency (GB). Product Information as approved by the CHMP on 19 April 2012, pending endorsement by the European Commission. Annex I. Summary of product characteristics [Internet]. London: European Medicines Agency;2012. cited 2014 Jul 21. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Other/2012/04/WC500125687.pdf.
26. U.S. Food and Drug Administration. Highlights of prescribing information: these highlights do not include all the information needed to use GILENYA (TM) safely and effectively. See full prescribing information for GILENYA. GILENYA (fingolimod) capsules Initial U.S. Approval: 2010 [Internet]. Silver Spring, MD: U.S. Food and Drug Administration;2012. cited 2014 Jul 21. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022527s008lbl.pdf.
27. Bruneau JM, Yea CM, Spinella-Jaegle S, Fudali C, Woodward K, Robson PA, et al. Purification of human dihydro-orotate dehydrogenase and its inhibition by A77 1726, the active metabolite of leflunomide. Biochem J. 1998; 336(Pt 2):299–303.
Article
28. Herrmann ML, Schleyerbach R, Kirschbaum BJ. Leflunomide: an immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases. Immunopharmacology. 2000; 47:273–289.
Article
29. Merrill JE, Hanak S, Pu SF, Liang J, Dang C, Iglesias-Bregna D, et al. Teriflunomide reduces behavioral, electrophysiological, and histopathological deficits in the Dark Agouti rat model of experimental autoimmune encephalomyelitis. J Neurol. 2009; 256:89–103.
Article
30. Greene S, Watanabe K, Braatz-Trulson J, Lou L. Inhibition of dihydroorotate dehydrogenase by the immunosuppressive agent leflunomide. Biochem Pharmacol. 1995; 50:861–867.
Article
31. Davis JP, Cain GA, Pitts WJ, Magolda RL, Copeland RA. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry. 1996; 35:1270–1273.
Article
32. Cherwinski HM, Cohn RG, Cheung P, Webster DJ, Xu YZ, Caulfield JP, et al. The immunosuppressant leflunomide inhibits lymphocyte proliferation by inhibiting pyrimidine biosynthesis. J Pharmacol Exp Ther. 1995; 275:1043–1049.
33. Rückemann K, Fairbanks LD, Carrey EA, Hawrylowicz CM, Richards DF, Kirschbaum B, et al. Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. J Biol Chem. 1998; 273:21682–21691.
Article
34. Siemasko KF, Chong AS, Williams JW, Bremer EG, Finnegan A. Regulation of B cell function by the immunosuppressive agent leflunomide. Transplantation. 1996; 61:635–642.
Article
35. Sartori A, Carle D, Freedman MS. Teriflunomide: a novel oral treatment for relapsing multiple sclerosis. Expert Opin Pharmacother. 2014; 15:1019–1027.
Article
36. Bar-Or A, Freedman MS, Kremenchutzky M, Menguy-Vacheron F, Bauer D, Jodl S, et al. Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology. 2013; 81:552–558.
Article
37. O'Connor PW, Li D, Freedman MS, Bar-Or A, Rice GP, Confavreux C, et al. A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology. 2006; 66:894–900.
38. O'Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011; 365:1293–1303.
39. Miller A, Wolinsky J, Kappos L, Comi G, Freedman MS, Olsson T, et al. TOPIC main outcomes: efficacy and safety of once-daily oral teriflunomide in patients with clinically isolated syndrome. In : 29th Congress of the European Committee for Treatment and Research in Multiple Sclerosis; 2013 Oct 2-5; Copenhagen, Denmark.
40. Vermersch P, Czlonkowska A, Grimaldi LM, Confavreux C, Comi G, Kappos L, et al. Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult Scler. 2014; 20:705–716.
Article
41. Confavreux C, O'Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014; 13:247–256.
Article
42. Sanofi (FR). Highlights of prescribing information: these highlights do not include all the infromation needed to use AUBAGIO (R) safely and effectively. See full precribing information for AUBAGIO. AUBAGIO (R) (teriflunomide) tablets, for oral use. Initial U.S. Approval: 2012 [Internet]. Paris: Sanofi;2012. cited 2014 Jul 21. Available from: http://products.sanofi.us/aubagio/aubagio.pdf.
43. BG 12: BG 00012, BG 12/Oral Fumarate, FAG-201, second-generation fumarate derivative--Fumapharm/Biogen Idec. Drugs R D. 2005; 6:229–230.
44. de Jong R, Bezemer AC, Zomerdijk TP, van de Pouw-Kraan T, Ottenhoff TH, Nibbering PH. Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agent monomethylfumarate. Eur J Immunol. 1996; 26:2067–2074.
Article
45. Schilling S, Goelz S, Linker R, Luehder F, Gold R. Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin Exp Immunol. 2006; 145:101–107.
Article
46. Treumer F, Zhu K, Gläser R, Mrowietz U. Dimethylfumarate is a potent inducer of apoptosis in human T cells. J Invest Dermatol. 2003; 121:1383–1388.
Article
47. Cannella B, Cross AH, Raine CS. Adhesion-related molecules in the central nervous system. Upregulation correlates with inflammatory cell influx during relapsing experimental autoimmune encephalomyelitis. Lab Invest. 1991; 65:23–31.
48. Lossinsky AS, Badmajew V, Robson JA, Moretz RC, Wisniewski HM. Sites of egress of inflammatory cells and horseradish peroxidase transport across the blood-brain barrier in a murine model of chronic relapsing experimental allergic encephalomyelitis. Acta Neuropathol. 1989; 78:359–371.
Article
49. Vandermeeren M, Janssens S, Borgers M, Geysen J. Dimethylfumarate is an inhibitor of cytokine-induced E-selectin, VCAM-1, and ICAM-1 expression in human endothelial cells. Biochem Biophys Res Commun. 1997; 234:19–23.
Article
50. Loewe R, Pillinger M, de Martin R, Mrowietz U, Gröger M, Holnthoner W, et al. Dimethylfumarate inhibits tumor-necrosis-factor-induced CD62E expression in an NF-kappa B-dependent manner. J Invest Dermatol. 2001; 117:1363–1368.
51. Kappos L, Gold R, Miller DH, Macmanus DG, Havrdova E, Limmroth V, et al. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet. 2008; 372:1463–1472.
Article
52. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997; 236:313–322.
Article
53. Venugopal R, Jaiswal AK. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene. 1998; 17:3145–3156.
Article
54. Chen XL, Dodd G, Thomas S, Zhang X, Wasserman MA, Rovin BH, et al. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol. 2006; 290:H1862–H1870.
Article
55. Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H, Bista P, et al. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther. 2012; 341:274–284.
Article
56. Schimrigk S, Brune N, Hellwig K, Lukas C, Bellenberg B, Rieks M, et al. Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur J Neurol. 2006; 13:604–610.
Article
57. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012; 367:1098–1107.
Article
58. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012; 367:1087–1097.
Article
59. Huynh E, Sigal D, Saven A. Cladribine in the treatment of hairy cell leukemia: initial and subsequent results. Leuk Lymphoma. 2009; 50:Suppl 1. 12–17.
Article
60. Hartung HP, Aktas O, Kieseier B, Giancarlo Comi GC. Development of oral cladribine for the treatment of multiple sclerosis. J Neurol. 2010; 257:163–170.
Article
61. Liliemark J. The clinical pharmacokinetics of cladribine. Clin Pharmacokinet. 1997; 32:120–131.
Article
62. Beutler E. Cladribine (2-chlorodeoxyadenosine). Lancet. 1992; 340:952–956.
Article
63. Sipe JC, Romine JS, Koziol JA, McMillan R, Zyroff J, Beutler E. Cladribine in treatment of chronic progressive multiple sclerosis. Lancet. 1994; 344:9–13.
64. Beutler E, Sipe JC, Romine JS, Koziol JA, McMillan R, Zyroff J. The treatment of chronic progressive multiple sclerosis with cladribine. Proc Natl Acad Sci U S A. 1996; 93:1716–1720.
Article
65. Rice GP, Filippi M, Comi G. Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group. Neurology. 2000; 54:1145–1155.
Article
66. Romine JS, Sipe JC, Koziol JA, Zyroff J, Beutler E. A double-blind, placebo-controlled, randomized trial of cladribine in relapsing-remitting multiple sclerosis. Proc Assoc Am Physicians. 1999; 111:35–44.
Article
67. Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Soelberg Sørensen P, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010; 362:416–426.
Article
68. Leist TP, Comi G, Cree BA, Coyle PK, Freedman MS, Hartung HP, et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 2014; 13:257–267.
Article
69. Cook S, Vermersch P, Comi G, Giovannoni G, Rammohan K, Rieckmann P, et al. Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine Tablets treating multiple sclerosis orallY) study. Mult Scler. 2011; 17:578–593.
Article
70. Andersen O, Lycke J, Tollesson PO, Svenningsson A, Runmarker B, Linde AS, et al. Linomide reduces the rate of active lesions in relapsing-remitting multiple sclerosis. Neurology. 1996; 47:895–900.
Article
71. Noseworthy JH, Wolinsky JS, Lublin FD, Whitaker JN, Linde A, Gjorstrup P, et al. Linomide in relapsing and secondary progressive MS: part I: trial design and clinical results. North American Linomide Investigators. Neurology. 2000; 54:1726–1733.
Article
72. Wolinsky JS, Narayana PA, Noseworthy JH, Lublin FD, Whitaker JN, Linde A, et al. Linomide in relapsing and secondary progressive MS: part II: MRI results. MRI Analysis Center of the University of Texas-Houston, Health Science Center, and the North American Linomide Investigators. Neurology. 2000; 54:1734–1741.
Article
73. Yang JS, Xu LY, Xiao BG, Hedlund G, Link H. Laquinimod (ABR-215062) suppresses the development of experimental autoimmune encephalomyelitis, modulates the Th1/Th2 balance and induces the Th3 cytokine TGF-beta in Lewis rats. J Neuroimmunol. 2004; 156:3–9.
Article
74. Linker R, Thöne J, Comi G, Gold R. Laquinimod induces up-regulation of neurotrophins in serum of patients with relapsing-remitting multiple sclerosis. In : 25th Congress of the European Committee for the Treatment and Research in Multiple Sclerosis; 2009 Sep 9-12; Düsseldorf, Germany.
75. Polman C, Barkhof F, Sandberg-Wollheim M, Linde A, Nordle O, Nederman T, et al. Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology. 2005; 64:987–991.
Article
76. Comi G, Pulizzi A, Rovaris M, Abramsky O, Arbizu T, Boiko A, et al. Effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet. 2008; 371:2085–2092.
Article
77. Comi G, Abramsky O, Arbizu T, Boyko A, Gold R, Havrdová E, et al. Oral laquinimod in patients with relapsing-remitting multiple sclerosis: 36-week double-blind active extension of the multi-centre, randomized, double-blind, parallel-group placebo-controlled study. Mult Scler. 2010; 16:1360–1366.
Article
78. Comi G, Jeffery D, Kappos L, Montalban X, Boyko A, Rocca MA, et al. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med. 2012; 366:1000–1009.
Article
79. Filippi M, Rocca MA, Pagani E, De Stefano N, Jeffery D, Kappos L, et al. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry. 2014; 85:851–858.
80. Vollmer TL, Sorensen PS, Selmaj K, Zipp F, Havrdova E, Cohen JA, et al. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol. 2014; 261:773–783.
Article
81. Vollmer T, Montalban X, Comi G, Ziemssen T, Boyko A, Vermersch P, et al. Multicentre, randomized, placebo controlled study to evaluate the efficacy, safety and tolerability of two doses of oral laquinimod (0.6mg/day and 1.2mg/day) for the treatment of patients with relapsing remitting multiple sclerosis. In : 29th Congress of the European Committee for Treatment and Research in Multiple Sclerosis; 2013 Oct 2-5; Copenhagen, Denmark.
82. Varrin-Doyer M, Zamvil SS, Schulze-Topphoff U. Laquinimod, an up-and-coming immunomodulatory agent for treatment of multiple sclerosis. Exp Neurol. 2014; 262PA:66–71.
Article
Full Text Links
  • JCN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr