Electrolyte Blood Press.  2011 Dec;9(2):41-44. 10.5049/EBP.2011.9.2.41.

ACE2 and Angiotensin-(1-7) in Hypertensive Renal Disease

Affiliations
  • 1Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea. jymoon@khu.ac.kr

Abstract

The recently discovered angiotensin-converting enzyme-related carboxypeptidase 2 (ACE2)-[Angiotensin-(1-7)(Ang-(1-7)]-Mas receptor axis has an opposing function to that of the ACE-Angiotensin II (Ang II)-Angiotensin type 1 (AT1) receptor axis. Ang-(1-7) is present in the kidneys at concentrations comparable to those of Ang II and is associated with vasodilation, modulation of sodium and water transport, and stimulation of nitric oxide (NO) synthase. Ang-(1-7) also acts as a physiological antagonist of Ang II by counterbalancing the Ang II-mediated intracellular signaling pathway. In a hypertensive model, increased ACE and decreased ACE2 along with a higher ACE/ACE2 ratio in hypertensive kidneys appeared to favor Ang II generation, leading to hypertensive renal damage. In addition, the administration of a selective Ang-(1-7) receptor blocker or an ACE2 inhibitor was associated with worsening of hypertension and renal function. Ang-(1-7)-mediated increases in renal blood flow were abolished by blockade of the Mas receptor and by inhibition of prostaglandin release and NO in spontaneously hypertensive rats and in Wistar-Kyoto controls. Further research on the function of the ACE2-Ang-(1-7)-Mas receptor axis could lead to a novel target for inhibiting kidney disease progression.

Keyword

ACE; ACE2; angiotensin II; angiotensin-(1-7)

MeSH Terms

Angiotensin I
Angiotensin II
Hypertension
Kidney
Kidney Diseases
Nitric Oxide
Peptide Fragments
Peptidyl-Dipeptidase A
Rats, Inbred SHR
Renal Circulation
Sodium
Vasodilation
Water
Axis, Cervical Vertebra
Angiotensin I
Angiotensin II
Nitric Oxide
Peptide Fragments
Peptidyl-Dipeptidase A
Sodium
Water

Figure

  • Fig. 1 Renin-Angiotensin-Aldosterone System. ACE2, angiotensin-converting enzyme-related carboxypeptidase 2; ACE, angiotensin-converting enzyme; AT1, Angiotensin II type 1; AT2, Angiotensin II type 2.


Reference

1. Benter IF, Yousif MH, Dhaunsi GS, Kaur J, Chappell MC, Diz DI. Angiotensin-(1-7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am J Nephrol. 2008; 28:25–33. PMID: 17890855.
Article
2. Li N, Zimpelmann J, Cheng K, Wilkins JA, Burns KD. The role of angiotensin converting enzyme 2 in the generation of angiotensin 1-7 by rat proximal tubules. Am J Physiol Renal Physiol. 2005; 288:F353–F362. PMID: 15467007.
Article
3. Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007; 49:185–192. PMID: 17116756.
Article
4. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000; 87:E1–E9. PMID: 10969042.
Article
5. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000; 275:33238–33243. PMID: 10924499.
6. Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002; 277:14838–14843. PMID: 11815627.
Article
7. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002; 417:822–828. PMID: 12075344.
Article
8. Tikellis C, Johnston CI, Forbes JM, et al. Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension. 2003; 41:392–397. PMID: 12623933.
Article
9. Gallagher PE, Chappell MC, Ferrario CM, Tallant EA. Distinct roles for ANG II and ANG-(1-7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes. Am J Physiol Cell Physiol. 2006; 290:C420–C426. PMID: 16176966.
Article
10. Esteban V, Heringer-Walther S, Sterner-Kock A, et al. Angiotensin-(1-7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS One. 2009; 4:e5406. PMID: 19404405.
Article
11. Moon JY, Tanimoto M, Gohda T, et al. Attenuating effect of angiotensin-(1-7) on angiotensin II-mediated NAD(P)H oxidase activation in type 2 diabetic nephropathy of KK-A(y)/Ta mice. Am J Physiol Renal Physiol. 2011; 300:F1271–F1282. PMID: 21367916.
Article
12. Luque M, Martin P, Martell N, Fernandez C, Brosnihan KB, Ferrario CM. Effects of captopril related to increased levels of prostacyclin and angiotensin-(1-7) in essential hypertension. J Hypertens. 1996; 14:799–805. PMID: 8793704.
Article
13. Igase M, Strawn WB, Gallagher PE, Geary RL, Ferrario CM. Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1-7) expression in the aorta of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2005; 289:H1013–H1019. PMID: 15833808.
Article
14. Ye M, Wysocki J, William J, Soler MJ, Cokic I, Batlle D. Glomerular localization and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol. 2006; 17:3067–3075. PMID: 17021266.
Article
15. Koka V, Huang XR, Chung AC, Wang W, Truong LD, Lan HY. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol. 2008; 172:1174–1183. PMID: 18403595.
Article
16. Burgelova M, Vanourkova Z, Thumova M, et al. Impairment of the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas axis contributes to the acceleration of two-kidney, one-clip Goldblatt hypertension. J Hypertens. 2009; 27:1988–2000. PMID: 19593210.
17. Dharmani M, Mustafa MR, Achike FI, Sim MK. Effects of angiotensin 1-7 on the actions of angiotensin II in the renal and mesenteric vasculature of hypertensive and streptozotocin-induced diabetic rats. Eur J Pharmacol. 2007; 561:144–150. PMID: 17320855.
Article
18. Sampaio WO, Nascimento AA, Santos RA. Systemic and regional hemodynamic effects of angiotensin-(1-7) in rats. Am J Physiol Heart Circ Physiol. 2003; 284:H1985–H1994. PMID: 12573992.
Article
19. Reckelhoff JF, Zhang H, Granger JP. Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension. 1998; 31:435–439. PMID: 9453341.
Article
20. Sullivan JC, Semprun-Prieto L, Boesen EI, Pollock DM, Pollock JS. Sex and sex hormones influence the development of albuminuria and renal macrophage infiltration in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2007; 293:R1573–R1579. PMID: 17699561.
Article
21. Reckelhoff JF, Zhang H, Srivastava K. Gender differences in development of hypertension in spontaneously hypertensive rats: role of the renin-angiotensin system. Hypertension. 2000; 35:480–483. PMID: 10642345.
22. Silva-Antonialli MM, Tostes RC, Fernandes L, et al. A lower ratio of AT1/AT2 receptors of angiotensin II is found in female than in male spontaneously hypertensive rats. Cardiovasc Res. 2004; 62:587–593. PMID: 15158151.
23. Sullivan JC, Bhatia K, Yamamoto T, Elmarakby AA. Angiotensin (1-7) receptor antagonism equalizes angiotensin II-induced hypertension in male and female spontaneously hypertensive rats. Hypertension. 2010; 56:658–666. PMID: 20713916.
Article
Full Text Links
  • EBP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr