Clin Endosc.  2014 Sep;47(5):383-388. 10.5946/ce.2014.47.5.383.

Molecular Imaging for Theranostics in Gastroenterology: One Stone to Kill Two Birds

Affiliations
  • 1Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea. hahmkb@cha.ac.kr
  • 2Gachon University College of Pharmacy, Incheon, Korea.

Abstract

Molecular imaging in gastroenterology has become more feasible with recent advances in imaging technology, molecular genetics, and next-generation biochemistry, in addition to advances in endoscopic imaging techniques including magnified high-resolution endoscopy, narrow band imaging or autofluorescence imaging, flexible spectral imaging color enhancement, and confocal laser endomicroscopy. These developments have the potential to serve as "red flag" techniques enabling the earlier and accurate detection of mucosal abnormalities (such as precancerous lesions) beyond biomarkers, virtual histology of detected lesions, and molecular targeted therapy-the strategy of "one stone to kill two or three birds"; however, more effort should be done to be "blue ocean" benefit. This review deals with the introduction of Raman spectroscopy endoscopy, imaging mass spectroscopy, and nanomolecule development for theranostics. Imaging of molecular pathological changes in cells/tissues/organs might open the "royal road" to either convincing diagnosis of diseases that otherwise would only be detected in the advanced stages or novel therapeutic methods targeted to personalized medicine.

Keyword

Molecular imaging; Spectrum analysis, Raman; Imaging mass spectroscopy; Theranostics; Individualized medicine

MeSH Terms

Biochemistry
Birds*
Diagnosis
Endoscopy
Gastroenterology*
Mass Spectrometry
Molecular Biology
Molecular Imaging*
Narrow Band Imaging
Optical Imaging
Spectrum Analysis, Raman
Biomarkers
Precision Medicine

Figure

  • Fig. 1 Molecular imaging: simple but precise. When endoscopists find suspicious lesions or have information before endoscopy, they simply inject the appropriate nanomedicine dye for molecular imaging and then just switch the optimal light to conclude the observation.

  • Fig. 2 Molecular imaging for theranostics: one stone to kill two or three birds. These precise and predictive molecular imaging technologies might enable molecular targeted therapy and allow understanding the underlying pathogenesis far beyond biomarkers could.


Cited by  1 articles

International Digestive Endoscopy Network 2014: Turnpike to the Future
Eun Young Kim, Kwang An Kwon, Il Ju Choi, Ji Kon Ryu, Ki Baik Hahm
Clin Endosc. 2014;47(5):371-382.    doi: 10.5946/ce.2014.47.5.371.


Reference

1. Miller JC, Thrall JH. Commission of Molecular Imaging, American College of Radiology. Clinical molecular imaging. J Am Coll Radiol. 2004; 1(1 Suppl):4–23. PMID: 17411749.
Article
2. Rollo FD. Molecular imaging: an overview and clinical applications. Radiol Manage. 2003; 25:28–32. PMID: 12817419.
3. Li KC. From molecular imaging to systems diagnostics: time for another paradigm shift? Eur J Radiol. 2009; 70:201–204. PMID: 19261418.
Article
4. Cho WY, Jang JY, Lee DH. Endoscopic Technology and Investigation Study Group. Recent advances in image-enhanced endoscopy. Clin Endosc. 2011; 44:65–75. PMID: 22741116.
Article
5. Badizadegan K, Backman V, Boone CW, et al. Spectroscopic diagnosis and imaging of invisible pre-cancer. Faraday Discuss. 2004; 126:265–279. PMID: 14992412.
Article
6. Qiu L, Turzhitsky V, Chuttani R, et al. Spectral imaging with scattered light: from early cancer detection to cell biology. IEEE J Sel Top Quantum Electron. 2012; 18:1073–1083. PMID: 23087592.
Article
7. Gurjar RS, Backman V, Perelman LT, et al. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat Med. 2001; 7:1245–1248. PMID: 11689891.
Article
8. Sokolov K, Follen M, Richards-Kortum R. Optical spectroscopy for detection of neoplasia. Curr Opin Chem Biol. 2002; 6:651–658. PMID: 12413550.
Article
9. Devpura S, Barton KN, Brown SL, et al. Vision 20/20: the role of Raman spectroscopy in early stage cancer detection and feasibility for application in radiation therapy response assessment. Med Phys. 2014; 41:050901. PMID: 24784365.
Article
10. Keating ME, Byrne HJ. Raman spectroscopy in nanomedicine: current status and future perspective. Nanomedicine (Lond). 2013; 8:1335–1351. PMID: 23914968.
Article
11. Kneipp J, Kneipp H, Kneipp K. SERS: a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev. 2008; 37:1052–1060. PMID: 18443689.
12. Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl. 2014; 53:4756–4795. PMID: 24711218.
Article
13. Zhang Y, Hong H, Cai W. Imaging with Raman spectroscopy. Curr Pharm Biotechnol. 2010; 11:654–661. PMID: 20497112.
Article
14. Zhang Y, Hong H, Myklejord DV, Cai W. Molecular imaging with SERS-active nanoparticles. Small. 2011; 7:3261–3269. PMID: 21932216.
Article
15. Qian XM, Nie SM. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev. 2008; 37:912–920. PMID: 18443676.
Article
16. Han XX, Zhao B, Ozaki Y. Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem. 2009; 394:1719–1727. PMID: 19267242.
Article
17. Schlücker S. SERS microscopy: nanoparticle probes and biomedical applications. Chemphyschem. 2009; 10:1344–1354. PMID: 19565576.
Article
18. Jun BH, Kim G, Noh MS, et al. Surface-enhanced Raman scattering-active nanostructures and strategies for bioassays. Nanomedicine (Lond). 2011; 6:1463–1480. PMID: 22026382.
Article
19. Betz JF, Yu WW, Cheng Y, White IM, Rubloff GW. Simple SERS substrates: powerful, portable, and full of potential. Phys Chem Chem Phys. 2014; 16:2224–2239. PMID: 24366393.
Article
20. Abalde-Cela S, Aldeanueva-Potel P, Mateo-Mateo C, Rodriguez-Lorenzo L, Alvarez-Puebla RA, Liz-Marzán LM. Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J R Soc Interface. 2010; 7(Suppl 4):S435–S450. PMID: 20462878.
Article
21. Garai E, Sensarn S, Zavaleta CL, et al. High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device. J Biomed Opt. 2013; 18:096008. PMID: 24008818.
Article
22. Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater. 2010; 9:60–67. PMID: 20010829.
Article
23. Hossain MK, Kitahama Y, Huang GG, Han X, Ozaki Y. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Anal Bioanal Chem. 2009; 394:1747–1760. PMID: 19384546.
Article
24. Zavaleta CL, Smith BR, Walton I, et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci U S A. 2009; 106:13511–13516. PMID: 19666578.
Article
25. Palonpon AF, Sodeoka M, Fujita K. Molecular imaging of live cells by Raman microscopy. Curr Opin Chem Biol. 2013; 17:708–715. PMID: 23773582.
Article
26. Zavaleta CL, Hartman KB, Miao Z, et al. Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging. Small. 2011; 7:2232–2240. PMID: 21608124.
Article
27. Harada Y, Takamatsu T. Raman molecular imaging of cells and tissues: towards functional diagnostic imaging without labeling. Curr Pharm Biotechnol. 2013; 14:133–140. PMID: 22356110.
Article
28. Kendall C, Stone N, Shepherd N, et al. Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett's oesophagus. J Pathol. 2003; 200:602–609. PMID: 12898596.
Article
29. Almond LM, Hutchings J, Lloyd G, et al. Endoscopic Raman spectroscopy enables objective diagnosis of dysplasia in Barrett's esophagus. Gastrointest Endosc. 2014; 79:37–45. PMID: 23886354.
30. Wang J, Bergholt MS, Zheng W, Huang Z. Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy. Opt Lett. 2013; 38:2321–2323. PMID: 23811915.
Article
31. Taketani A, Hariyani R, Ishigaki M, Andriana BB, Sato H. Raman endoscopy for the in situ investigation of advancing colorectal tumors in live model mice. Analyst. 2013; 138:4183–4190. PMID: 23762892.
Article
32. Zavaleta CL, Garai E, Liu JT, et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci U S A. 2013; 110:E2288–E2297. PMID: 23703909.
Article
33. Bergholt MS, Zheng W, Ho KY, et al. Fiber-optic Raman spectroscopy probes gastric carcinogenesis in vivo at endoscopy. J Biophotonics. 2013; 6:49–59. PMID: 23288709.
34. Bergholt MS, Zheng W, Lin K, et al. In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques. Int J Cancer. 2011; 128:2673–2680. PMID: 20726002.
Article
35. Huang Z, Teh SK, Zheng W, et al. In vivo detection of epithelial neoplasia in the stomach using image-guided Raman endoscopy. Biosens Bioelectron. 2010; 26:383–389. PMID: 20729057.
Article
36. Bergholt MS, Zheng W, Lin K, et al. Raman endoscopy for in vivo differentiation between benign and malignant ulcers in the stomach. Analyst. 2010; 135:3162–3168. PMID: 20941419.
Article
37. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods. 2007; 4:828–833. PMID: 17901873.
Article
38. Balluff B, Schöne C, Höfler H, Walch A. MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem Cell Biol. 2011; 136:227–244. PMID: 21805154.
Article
39. Kubo A, Kajimura M, Suematsu M. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS): a challenge for reliable quantitative analyses. Mass Spectrom (Tokyo). 2012; 1:A0004. PMID: 24349905.
Article
40. Zaima N, Hayasaka T, Goto-Inoue N, Setou M. Matrix-assisted laser desorption/ionization imaging mass spectrometry. Int J Mol Sci. 2010; 11:5040–5055. PMID: 21614190.
Article
41. Ko KH, Kwon CI, Park SH, et al. Application of matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF IMS) for premalignant gastrointestinal lesions. Clin Endosc. 2013; 46:611–619. PMID: 24340253.
Article
42. Ko KH, Han NY, Kwon CI, et al. Recent advances in molecular imaging of premalignant gastrointestinal lesions and future application for early detection of barrett esophagus. Clin Endosc. 2014; 47:7–14. PMID: 24570878.
Article
43. Setou M, Kurabe N. Mass microscopy: high-resolution imaging mass spectrometry. J Electron Microsc (Tokyo). 2011; 60:47–56. PMID: 21109523.
Article
44. Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. Small. 2007; 3:1840–1854. PMID: 17943716.
Article
45. Matsuura N, Rowlands JA. Towards new functional nanostructures for medical imaging. Med Phys. 2008; 35:4474–4487. PMID: 18975695.
Article
46. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013; 24:1159–1166. PMID: 23578464.
Article
47. Terreno E, Uggeri F, Aime S. Image guided therapy: the advent of theranostic agents. J Control Release. 2012; 161:328–337. PMID: 22626940.
Article
48. Barar J, Omidi Y. Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer. Bioimpacts. 2014; 4:3–14. PMID: 24790893.
49. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011; 44:1029–1038. PMID: 21545096.
Article
50. Lammers T, Kiessling F, Hennink WE, Storm G. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm. 2010; 7:1899–1912. PMID: 20822168.
Article
51. Pan D, Caruthers SD, Chen J, et al. Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Med Chem. 2010; 2:471–490. PMID: 20485473.
Article
Full Text Links
  • CE
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr