1. Larsen WJ. Human Embryology. 2001. 3rd Edition. Oxford: Churchill Livingstone;392–412.
2. Moore KL, Persaud TV. The Developing Human: Clinically oriented embryology. 2003. 7th Edition. Philadelphia: Saunders;476–479.
3. Park HW. Human embryology. 2005. 3rd Edition. Seoul: Koonja Publishing Inc.;503–507.
4. Streit A. Origin of the vertebrate inner ear: evolution and induction of the otic placode. J Anat. 2001. 199:99–103.
Article
5. O'Rahilly R, Muller F. Developmental Stages in Human Embryos. 1987. Washington DC: Carnegie Institution of Washington;186.
6. Theiler K. The House Mouse. 1972. New York: Springer-Verlag;44–108.
7. Rugh R. The mouse. Its reproduction and development. 1991. Oxford: Oxford University Press;249–251.
8. Miller DA, Pelton RW, Derynck R, Moses HL. Transforming growth factor-beta. A family of growth regulatory peptides. Ann N Y Acad Sci. 1990. 593:208–217.
9. McCartney-Francis NL, Frazier-Jessen M, Wahl SM. TGF-beta: a balancing act. Int Rev Immunol. 1998. 16:553–580.
10. Akhurst RJ, Lehnert SA, Gatherer D, Duffie E. The role of TGF beta in mouse development. Ann N Y Acad Sci. 1990. 593:259–271.
11. Nilsen-Hamilton M. Transforming growth factor-beta and its actions on cellular growth and differentiation. Curr Top Dev Biol. 1990. 24:95–136.
12. Millan FA, Denhez F, Konaiah P, Akhurst RJ. Embryonic gene expression patterns of TGFβ1, β2 and β3 suggest different development functions in vivo. Development (Camb.). 1991. 111:131–143.
13. Pelton RW, Dickinson ME, Moses HL, Hogan BL. In situ hybridization analysis of TGFβ3 RNA expression during mouse development: comparative studies with TGF β1 and β2. Development (Camb.). 1990. 110:609–620.
14. Schmid P, Cox D, Bilbe G, Maier R, McMaster GK. Differential expression of TGFβ1, β2 and β3 genes during mouse embryogenesis. Development (Camb.). 1991. 111:117–130.
15. Pelton RW, Saxena B, Jones M, Moses HL, Gold LI. Immunohistochemical localization of TGFβ1, TGFβ2 and TGFβ3 in the mouse embryo: Expression patterns suggest multiple roles during embryonic development. J Cell Biol. 1991. 4:1091–1105.
16. Takemura T, Sakagami M, Takebayashi K, Umemoto M, Nakase T, Takaoka K, Kubo T, Kitamura Y, Nomura S. Localization of bone morphogenetic protein-4 messenger RNA in developing mouse cochlea. Hear Res. 1996. 95:26–32.
Article
17. Paradies NE, Sanford LP, Doetschman T, Friedman RA. Developmental expression of the TGFβ in the mouse cochlea. Mech Dev. 1998. 79:165–168.
18. Wu DK, Oh SH. Sensory organ generation in the chick inner ear. J Neurosci. 1996. 16:6454–6462.
Article
19. Morsli H, Choo D, Ryan A, Johnson R, Wu DK. Development of the mouse inner ear and origin of its sensory organs. J Neurosci. 1998. 18:3327–3335.
Article
20. Cole LK, Le Roux I, Nunes F, Laufer E, Lewis J, Wu DK. Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. J Comp Neurol. 2000. 424:509–520.
21. Kil SH, Collazo A. Origin of inner ear sensory organs revealed by fate map and time lapse analyses. Dev Biol. 2001. 233:365–379.
22. Frenz DA, Van de Water TR, Galinovic-Schwartz V. Transforming growth factor beta: does it direct otic capsule formation? Ann Otol Rhinol Laryngol. 1991. 100:301–307.
Article
23. Frenz DA, Galinovic-Schwartz V, Liu W, Flanders KC, Van de Water TR. Transforming growth factor beta 1 is an epithelial-derived signal peptide that influence otic capsule formation. Dev Biol. 1992. 153:324–336.
24. Frenz DA, Liu W. Treatment with all-trans-retinoic acid decreases levels of endogenous TGF-beta (1) in the mesenchyme of the developing mouse inner ear. Teratology. 2000. 61:297–304.
25. Butts SC, Liu W, Li G, Frenz DA. Transforming growth factor-β1 signaling participates in the physiological and pathological regulation of mouse inner ear development by all-trans retinoic acid. Birth Defects Res A Clin Mol Teratol. 2005. 73:218–228.
Article