1. Beitsch PD, Shaitelman SF, Vicini FA. Accelerated partial breast irradiation. J Surg Oncol. 103(4):362–368. 2011.
Article
2. Alvarez C. Accelerated partial breast irradiation. J Am Coll Surg. 209(6):795–796. 2009.
Article
3. McIntosh A, Read PW, Khandelwal SR, et al. Evaluation of coplanar partial left breast irradiation using tomotherapy-based topotherapy. Int J Radiat Oncol Biol Phys. 71(2):603–610. 2008.
Article
4. Kozak KR, Smith BL, Adams J, et al. Accelerated partial-breast irradiation using proton beams: initial clinical experience. Int J Radiat Oncol Biol Phys. 66(3):691–698. 2006.
Article
5. Wilder RB, Curcio LD, Khanijou RK, et al. A Contura catheter offers dosimetric advantages over a MammoSite catheter that increase the applicability of accelerated partial breast irradiation. Brachytherapy. 8(4):373–378. 2009.
Article
6. Weed DW, Edmundson GK, Vicini FA, et al. Accelerated partial breast irradiation: a dosimetric comparison of three different techniques. Brachytherapy. 4(2):121–129. 2005.
Article
7. Stewart AJ, Khan AJ, Devlin PM. Partial breast irradiation: a review of techniques and indications. Br J Radiol. 83(989):369–378. 2010.
Article
8. Mydin AR, Gaffney H, Bergman A, et al. Does a three-field electron/minitangent photon technique offer dosimetric advantages to a multifield, photon-only technique for accelerated partial breast irradiation? Am J Clin Oncol. 33(4):336–340. 2010.
Article
9. Bourgier C, Taghian A, Marsiglia H. Three-field electron/minitangent photon technique offer dosimetric advantages to a multifield, photon-only technique for accelerated partial breast irradiation if well implemented. Am J Clin Oncol. 34(6):648. 2011.
Article
10. Vera R, Trombetta M, Mukhopadhyay ND, et al. Long-term cosmesis and toxicity following 3-dimensional conformal radiation therapy in the delivery of accelerated partial breast irradiation. Pract Radiat Oncol. 4(3):147–152. 2014.
Article
11. Galland-Girodet S, Pashtan I, MacDonald SM, et al. Long-term cosmetic outcomes and toxicities of proton beam therapy compared with photon-based 3-dimensional conformal accelerated partial-breast irradiation: a phase 1 trial. Int J Radiat Oncol Biol Phys. 90(3):493–500. 2014.
Article
12. Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol. 24(3):196–199. 2014.
Article
13. Rubinstein AE, Liao Z, Melancon AD, et al. Technical Note: A Monte Carlo study of magnetic-field-induced radiation dose effects in mice. Med Phys. 42(9):5510–5516. 2015.
Article
14. Burke B, Ghila A, Fallone BG, et al. Radiation induced current in the RF coils of integrated linac-MR systems: the effect of buildup and magnetic field. Med Phys. 39(8):5004–5014. 2012.
Article
15. Kirkby C, Stanescu T, Fallone BG. Magnetic field effects on the energy deposition spectra of MV photon radiation. Phys Med Biol. 54(2):243–257. 2009.
Article
16. Wen Z, Pelc NJ, Nelson WR, et al. Study of increased radiation when an x-ray tube is placed in a strong magnetic field. Med Phys. 34(2):408–418. 2007.
Article
17. Shen CS. adiation problems in a strong magnetic field. Ann N Y Acad Sci. 257:44–55. 1975.
18. Al-Basheer AK, Sjoden GE, Ghita M. Electron Dose Kernels to Account for Secondary article Transport in Deterministic Simulations. Nucl Technol. 168(3):906–918. 2009.
19. Kim JO, Kim JK. ose equivalent per unit fluence near the surface of the ICRU phantom by including the secondary electron transport for photons. Radiat Prot Dosimetry. 83(3):211–219. 1999.
20. Raaijmakers AJE, Raaymakers BW, Lagendijk JJW. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 50(7):1363–1376. 2005.
Article
21. Esmaeeli AD, Pouladian M, Monfared AS, et al. Effect of uniform magnetic field on dose distribution in the breast radiotherapy. Int J Radiat Res. 12(2):151–160. 2014.