J Korean Med Assoc.  2007 Feb;50(2):143-150. 10.5124/jkma.2007.50.2.143.

Myocardial Contractility, Perfusion, and Viability Analysis Using Multidetector CT in Patients with Ischemic Heart Disease

Affiliations
  • 1Department of Radiology, Keimyung University College of Medicine, Korea. ksm9723@yahoo.co.kr

Abstract

The imaging technique that can provide detailed information on the left ventricular function, myocardial perfusion and viability at the same time will not only be helpful for the prognostic assessment of patients with ischemic heart disease but also be valuable in choosing appropriate therapeutic strategies. In recent years, multidetector CT (MDCT) has been proposed as a useful non-invasive imaging method of evaluating both coronary artery stenoses and cardiac morphology at the same time. MDCT has proved to be in excellent agreement with echocardiography and magnetic resonance imaging in the assessment of the left ventricular function. In addition, MDCT can provide information on myocardial viability, which can be assessed from the left ventricular wall thickness, myocardial perfusion, and a delayed contrast enhancement pattern. Despite several shortcomings to be the first-line modality for the assessment of ischemic heart disease, MDCT can provide valuable additional dynamic information in patients undergoing MDCT coronary angiography.

Keyword

Multidetector CT; Myocardial contractility; Myocardial perfusion; Myocardial viability

MeSH Terms

Coronary Angiography
Coronary Stenosis
Echocardiography
Humans
Magnetic Resonance Imaging
Myocardial Ischemia*
Perfusion*
Ventricular Function, Left

Figure

  • Figure 1 Screen-shot from Leonardo workstation(Siemens, Forchheim, Germany) displaying dedicated analysis software for MDCT left ventricular function.

  • Figure 2 Short axis reformats from retrospectively ECG-gated MDCT allow circulation of end-systolic (A) and end-diastolic (B) images for assessment of ventricular function.

  • Figure 3 Images obtained in a 63-year-old man with acute myocardial infarction. MR perfusion image (A) shows low signal area in the mid-inferior wall of left ventricle. Delayed enhanced MR image (B) shows subendocardial dark zone (arrow) surrounded by hyperenhancement (arrowhead) in the same area. Two-phase contrast enhanced MDCT shows early transmural perfusion defect (arrow) (C) and subendocardial residual perfusion defect (arrow) with subepicardial late enhancement (arrowhead) (D) in the mid inferior wall of left ventricle. This myocardial enhancement pattern correlates well with contrast-enhanced MR imaging

  • Figure 4 Images obtained in a 72-year-old man with reperfused acute myocardial infarction. Catheter coronary angiogram (A) shows multiple significant stenoses in the proximal and middle (arrows) right coronary artery and total occlusion at the distal segment (arrowhead) of the right coronary artery. Two-phase contrast enhanced MDCT shows early transmural perfusion defect (B) and subendocardial residual perfusion defect (arrow) with subepicardial late enhancement (arrowhead) (C) in the mid-inferior wall of left ventricle.


Reference

1. Park JM, Choe YH, Chang S, Sung YM, Kang SS, Kim MJ, Han BK, Choi SH. Usefulness of multidetector-row CT in the evaluation of reperfused myocardial infarction in a rabbit model. Korean J Radiol. 2004. 5:19–24.
Article
2. Shah PK, Maddahi J, Staniloff HM, Ellrodt AG, Pichler M, Swan HJ, Berman DS. Variable spectrum and prognostic implications of left and right ventricular ejection fraction in patients with and without clinical heart failure after acute myocardial infarction. Am J Cardiol. 1986. 58:387–393.
Article
3. White HD, Norris RM, Brown MA, Brandt PWT, Whitlock RML, Wild CJ. Left ventricular end-systolic volume as the major determination of survival after recovery from myocardial infarction. Circulation. 1987. 76:44–51.
Article
4. Gerber TC, Behrenbeck T, Allison T, Mullan BP, Rumberger JA, Gibbons RJ. Comparison of measurement of left ventricular ejection fraction by Tc-99m sestamibi first-pass angiography with electron beam computed tomography in patients with anterior wall acute myocardial infarction. Am J Cardiol. 1999. 83:1022–1026.
Article
5. Seter RM, Fischer SE, Lorenz CH. Quantification of left ventricular function with magnetic resonance images acquired in real time. J Magn Reson Imaging. 2000. 12:430–438.
Article
6. Spuentrup E, Schroeder J, Mahnken AH, Schaeffter T, Botnar RM, Kuhl HP, Hanrath P, Gunther RW, Buecker A. Quantitative assessment of left ventricular function with interactive real-time spiral and radial MR imaging. Radiology. 2003. 227:870–876.
Article
7. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation. 2002. 106:2051–2054.
Article
8. Ropers D, Baum U, Pohle K, Anders K, Ulzheimer S, Ohnesorge B, Schlundt C, Bautz W, Daniel WG, Achenbach S. Detection of coronary artery stenoses with thin-slice multidetector row spiral computed tomography and multi-planar reconstruction. Circulation. 2003. 107:664–666.
Article
9. Nikolaou K, Knez A, Rist C, Wintersperger BJ, Leber A, Johnson T, Reiser MF, Becker CR. Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. Am J Roentgenol. 2006. 187:111–117.
Article
10. Kim TH, Ryu YH, Hur J, Kim SJ, Kim HS, Choi BW, Kim Y, Kim HJ. Evaluation of right ventricular volume and mass using retrospective ECG-gated cardiac multi-detector computed tomography: comparison with first-pass radionuclide angiography. Eur Radiol. 2005. 15:1987–1993.
Article
11. Kim TH, Hur J, Kim SJ, Kim HS, Choi BW, Choe KO, Yoon YW, Kwon HM. Two-phase reconstruction for the assessment of left ventricular volume and function using retrospective ECG-gated MDCT: comparision with echocardiography. Am J Roentgenol. 2005. 185:319–325.
Article
12. Juergens KU, Fischbach R. Left ventricular function studies with MDCT. Eur Radiol. 2006. 342–357.
13. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, Schmidt F, Galuschky C, Schummers G, Lang RM, Nesser HJ. Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation. 2006. 114:654–661.
Article
14. Orakzai SH, Orakzai RH, Nasir K, Budoff MJ. Assessment of cardiac function using multidetector row computed tomography. J Comput Assist Tomogr. 226. 30:555–563.
Article
15. Lessick J, Mutlak D, Rispler S, Ghersin E, Dragu R, Litmanovich D, Engel A, Reisner SA, Agmon Y. Comparison of multidetector computed tomography versus echocardiography for assessing regional left ventricular function. Am J Cardiol. 2005. 96:1011–1015.
Article
16. Schlosser T, Pagonidis K, Herborn CU, Hunold P, Waltering KU, Lauenstein TC, Barkhausen J. Assessment of left ventricular parameters using 16-MDCT and new software for endocardial and epicardial border delineation. Am J Roentgenol. 2005. 184:765–773.
Article
17. Heuschmid M, Rothfuss JK, Schroeder S, Fenchel M, Stauder N, Burgstahler C, Franow A, Kuzo RS, Kuettner A, Miller S, Claussen CD, Kopp AF. Assessment of left ventricular myocardial function using 16-slice multidetector-row com-puted tomography: comparison with magnetic resonance imaging and echocardiography. Eur Radiol. 2006. 16:551–559.
Article
18. Salm LP, Schuijf JD, de Roos A, Lamb HJ, Vliegen HW, Jukema JW, Joemai R, van der Wall EE, Bax JJ. Global and regional left ventricular function assessment with 16-detector row CT: comparison with echocardiography and cardiovascular magnetic resonance. Eur J Echocardiogr. 2006. 7:308–314.
Article
19. Juergens KU, Seifarth H, Maintz D, Grude M, Ozgun M, Wichter T, Heindel W, Fischbach R. MDCT determination of volume and function of the left ventricle: are short-axis image reformations necessary? Am J Roentgenol. 2006. 186:S. 371–378.
Article
20. Grude M, Juergens KU, Wichter T, Paul M, Fallenberg EM, Muller JG, Heindel W, Breithardt G, Fischbach R. Evaluation of global left ventricular myocardial function with electrocardiogram-gated multidetector computed tomography: comparison with magnetic resonance imaging. Invest Radiol. 2003. 38:653–661.
Article
21. Setser RM, Fischer SE, Lorenz CH. Quantification of left ventricular function with magnetic resonance images acquired in real time. J Magn Reson Imaging. 2000. 12:430–438.
Article
22. Achenbach S, Ropers D, Kuettner A, Flohr T, Ohnesorge B, Bruder H, Theessen H, Karakaya M, Daniel WG, Bautz W, Kalender WA, Anders K. Contrast-enhanced coronary artery visualization by dual-source computed tomography-Initial experience. Eur J Radiol. 2006. 57:331–335.
Article
23. Mahnken AH, Muhlenbruch G, Gunther RW, Wildberger JE. Cardiac CT: coronary arteries and beyond. Eur Radiol. (in press).
Article
24. Kurata A, Mochizuki T, Koyama Y, Haraikawa T, Suzuki J, Shigematsu Y, Higaki J. Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography: alternative to stress myocardial perfusion scintigraphy. Cir J. 2005. 69:550–557.
Article
25. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974. 34:48–55.
Article
26. Kim RJ, Chen EL, Lima JA, Judd RM. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation. 1996. 94:3318–3326.
Article
27. Sandstede JJW. Assessment of myocardial viability by MR imaging. Eur Radiol. 2003. 13:52–61.
Article
28. Ko SM, Seo JB, Hong MK, Do KH, Lee SH, Lee JS, Song JW, Park SJ, Park SW, Lim TH. Myocardial enhancement pattern in patients with acute myocardial infarction on two-phase contrast-enhanced ECG-gated multidetector-row. Computed tomography. Clin Radiol. 2006. 61:417–422.
Article
29. Lipton MJ, Higgins CB. Evaluation of ischemic heart disease by computerized transmission tomography. Radiol Clin North Am. 1980. 18:557–576.
30. Kramer PH, Goldstein JA, Herkenes RJ, Lipton MJ, Brundage BH. Imaging of acute myocardial infarction in man with contrast-enhanced computed transmission tomography. Am Heart J. 1984. 108:1514–1523.
Article
31. Mahnken AH, Koos R, Katoh M, Wildberger JE, Spuentrup E, Buecker A, Gunther RW, Kuhl HP. Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol. 2005. 45:2042–2047.
Article
32. Paul JF, Wartski M, Caussin C, Sigal-Cinqualbre A, Lancelin B, Angel C, Dambrin G. Late defect on delayed contrast-enhanced multi-detector row CT scans in the prediction of SPECT infarct size after reperfused acute myocardial infarction: initial experience. Radiology. 2005. 236:485–489.
Article
33. Nikolaou K, Sanz J, Poon M, Wintersperger BJ, Ohnesorge B, Rius T, Fayad ZA, Reiser MF, Becker CR. Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur Radiol. 2005. 15:864–871.
Article
34. Koyama Y, Matsuoka H, Mochizuki T, Higashino H, Kawakami H, Nakata S, Aono J, Ito T, Naka M, Ohashi Y, Higaki J. Assessment of reperfused acute myocardial infarction with two-phase contrast-enhanced helical CT: prediction of left ventricular function and wall thickness. Radiology. 2005. 235:804–811.
Article
35. Ko SM, Kim YW, Han SW, Seo JB. Early and delayed myocardial enhancement in myocardial infarction using two-phase contrast-enhanced Multidetector-row CT. Korean J Radiol. 2006. 6:342–357. (in press).
Article
Full Text Links
  • JKMA
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr