Clin Endosc.  2013 Jan;46(1):7-23. 10.5946/ce.2013.46.1.7.

Advance in Photosensitizers and Light Delivery for Photodynamic Therapy

Affiliations
  • 1PDT Research Institute, Inje University School of Nano System Engineering, Gimhae, Korea. ykshim@inje.ac.kr

Abstract

The brief history of photodynamic therapy (PDT) research has been focused on photosensitizers (PSs) and light delivery was introduced recently. The appropriate PSs were developed from the first generation PS Photofrin (QLT) to the second (chlorins or bacteriochlorins derivatives) and third (conjugated PSs on carrier) generations PSs to overcome undesired disadvantages, and to increase selective tumor accumulation and excellent targeting. For the synthesis of new chlorin PSs chlorophyll a is isolated from natural plants or algae, and converted to methyl pheophorbide a (MPa) as an important starting material for further synthesis. MPa has various active functional groups easily modified for the preparation of different kinds of PSs, such as methyl pyropheophorbide a, purpurin-18, purpurinimide, and chlorin e6 derivatives. Combination therapy, such as chemotherapy and photothermal therapy with PDT, is shortly described here. Advanced light delivery system is shown to establish successful clinical applications of PDT. Phtodynamic efficiency of the PSs with light delivery was investigated in vitro and/or in vivo.

Keyword

Photochemotherapy; Photosensitizing agents; Chlorophyll and chlorins; Photothermal therapy; Light delivery

MeSH Terms

Chlorophyll
Dihematoporphyrin Ether
Family Characteristics
Light
Photochemotherapy
Photosensitizing Agents
Porphyrins
Triazenes
Chlorophyll
Dihematoporphyrin Ether
Photosensitizing Agents
Porphyrins
Triazenes

Figure

  • Fig. 1 Examples of second generation photosensitizer. (A) Tookad. (B) Antrin (Lu texaphyrin). (C) Benzoporphyrin derivative monocarboxylic acid (BPD-MA). (D) Purlytin. (E) Foscan. (F) Phthalocyanine.

  • Fig. 2 Modified Jablonski diagram. Photophysical processes involved in photodynamic therapy: 1) absorption, 2) fluorescence, 3) internal conversion, 4) intersystem crossing, 5) phosphorescence, 6) formation of free radicals by energy transfer from T1 photosensitizer to biological substrates, and 7) formation of singlet oxygen (1O2) by energy transfer from T1 photosensitizer to triplet oxygen (3O2). Adapted from Sternberg et al. Tetrahedron 1998;54:4151-4202, with permission from David Dolphin.12

  • Fig. 3 Comparative structures of porphyrin, chlorine, and bacteriochlorin. The bold lines indicate the 18π electron [18]-diazaannulene aromatic pathway.

  • Fig. 4 The structures of Chl a and b, and methyl pheophorbide a (MPa).

  • Fig. 5 Structures of some Chl derivatives as photosensitizers in photodynamic therapy. (A) Photochlor (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a, HPPH). (B) Taraporfin (Mono-L-aspartyl chlorin e6, NPe6). (C) Chlorin e6. (D) Purpurin (PP)-18. (E) Chlorin p6. (F) Purpurinimide. (G) Ketobacteriochlorin. (H) Zn-Benzochlorin. (I) Benzbaceriochlorin.

  • Fig. 6 Structures of photosensitizer-carbohydrate conjugates. (A) Pyropheophorbide 2-deoxyglucosamide (Pyro-2DG). (B) Purpurinimide-carbohydrate conjugate. (C) A 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH)-Gal.

  • Fig. 7 Synthesis of the basic chlorin derivatives having reactive groups. Reaction conditions: a) 5% H2SO4 in MeOH, N2, 12 hours. b) 2, 4, 6-collidine, N2, reflux, 2 hours; c) aq. LiOH, N2, 1.5 hours; d) KOH/1-propanol/pyridine/air, 2 hours; CH2N2; e) H2NCH2CH2R, CH2Cl2, 2 hours; f) CBr4, PPh3; g) OsO4, NaIO4, 6 hours. MP, methyl pheophorbide; MPP, methyl pyropheophorbide; PP, purpurin.

  • Fig. 8 Synthesis of purpurinimides having active groups. Reaction conditions: a) RNH2, pyridine, 5 hours; b) RNH2, Toluene, N2, reflux, 6 to 12 hours, c) from 16A to 17, TFA; from 15A to 18, CBr4, PPh3. MP, methyl pheophorbide; MDD, methy pyropheophorbide; PP, purpurin.

  • Fig. 9 Synthetic pathway of Pu-18-N-methyl-D-glucamine (NMGA) conjugated to gold nanoparticles (GNPs). PS, photosensitizer. Adapted from Lkhagvadulam et al. J Porphyr Phthalocyanines 2012;16:331-340, with permission from World Scientific Publishing Co.95

  • Fig. 10 Cell viability (%) of Pu-18-N-methyl-D-glucamine (photosensitizer, PS), PS-gold nanoparticles (GNPs) conjugate (PSGNPs), and citrate-GNPs (GNPs) (5.5 µg/mL concentration of PS) treated A549 cells by exposure to an irradiation at 670 to 710 nm (2 J/cm2) for 15 minutes. Error bars represent the standard deviation of three replicate experiments. Adapted from Lkhagvadulam et al. J Porphyr Phthalocyanines 2012;16:331-340, with permission from World Scientific Publishing Co.95


Reference

1. Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G. Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev. 2005; 105:2647–2694. PMID: 15941225.
Article
2. Pandey RK, Zheng G. Kadish KM, Smith KM, Guilard R, editors. Porphyrins as photosensitizers in photodynamic therapy. The Porphyrin Handbook. 2000. Boston: Academic Press;p. 157–230.
3. Zuluaga MF, Lange N. Combination of photodynamic therapy with anti-cancer agents. Curr Med Chem. 2008; 15:1655–1673. PMID: 18673216.
Article
4. Juarranz A, Jaén P, Sanz-Rodríguez F, Cuevas J, González S. Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol. 2008; 10:148–154. PMID: 18321817.
Article
5. Dougherty TJ, Henderson BW, Schwartz S, Winkelman JW, Lipson RL. Henderson BW, Dougherty TJ, editors. Historical perspective. Photodynamic Therapy: Basic Principles and Clinical Applications. 1992. New York: M. Dekker;p. 1–15.
Article
6. Dougherty TJ, Grindey GB, Fiel R, Weishaupt KR, Boyle DG. Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst. 1975; 55:115–121. PMID: 1159805.
7. Orenstein A, Kostenich G, Roitman L, et al. A comparative study of tissue distribution and photodynamic therapy selectivity of chlorin e6, photofrin II and ALA-induced protoporphyrin IX in a colon carcinoma model. Br J Cancer. 1996; 73:937–944. PMID: 8611429.
Article
8. Spikes JD. Chlorins as photosensitizers in biology and medicine. J Photochem Photobiol B. 1990; 6:259–274. PMID: 2120404.
9. Baas P, van Mansom I, van Tinteren H, Stewart FA, van Zandwijk N. Effect of N-acetylcysteine on photofrin-induced skin photosensitivity in patients. Lasers Surg Med. 1995; 16:359–367. PMID: 7651057.
10. Kessel D, Thompson P. Purification and analysis of hematoporphyrin and hematoporphyrin derivative by gel exclusion and reverse-phase chromatography. Photochem Photobiol. 1987; 46:1023–1025. PMID: 2964039.
Article
11. Castanoa AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one: photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther. 2004; 1:279–293.
12. Sternberg ED, Dolphin D, Brückner C. Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron. 1998; 54:4151–4202.
Article
13. Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991; 54:659. PMID: 1798741.
Article
14. Gál D. Effect of photosensitizers in chemical and biological processes: the MTO mechanism in photodynamic therapy. Biochem Biophys Res Commun. 1992; 186:1032–1036. PMID: 1497636.
Article
15. Vidóczy T, Elzemzam S, Gál D. Physico-chemical modeling of the role of free radicals in photo-dynamic therapy. I. utilization of quantum yield data of singlet oxygen formation for the study of the interaction between excited photosensitizer and stable free radicals. Biochem Biophys Res Commun. 1992; 189:1548–1552. PMID: 1482365.
Article
16. Gál D, Kriska T, Maltseva E. In vivo experimental studies on the role of free radicals in photodynamic therapy. III. photodynamic effect on free radicals generated in cell cultures. Biochem Biophys Res Commun. 1997; 233:173–176. PMID: 9144417.
17. Figge FH, Weiland GS, Manganiello LO. Cancer detection and therapy: affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins. Proc Soc Exp Biol Med. 1948; 68:640. PMID: 18884315.
Article
18. Hamblin MR, Newman EL. On the mechanism of the tumour-localising effect in photodynamic therapy. J Photochem Photobiol B. 1994; 23:3–8. PMID: 8021748.
19. Boyle RW, Dolphin D. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol. 1996; 64:469–485. PMID: 8806226.
Article
20. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part three: photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn Ther. 2005; 2:91–106.
21. Yuan F, Leunig M, Berk DA, Jain RK. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc Res. 1993; 45:269–289. PMID: 8321142.
Article
22. Pottier R, Kennedy JC. The possible role of ionic species in selective biodistribution of photochemotherapeutic agents toward neoplastic tissue. J Photochem Photobiol B. 1990; 8:1–16. PMID: 2127428.
23. Allison BA, Pritchard PH, Levy JG. Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative. Br J Cancer. 1994; 69:833–839. PMID: 8180011.
Article
24. Roberts WG, Hasan T. Role of neovasculature and vascular permeability on the tumor retention of photodynamic agents. Cancer Res. 1992; 52:924–930. PMID: 1371089.
25. Korbelik M, Krosl G. Photofrin accumulation in malignant and host cell populations of a murine fibrosarcoma. Photochem Photobiol. 1995; 62:162–168. PMID: 7638261.
Article
26. Wendler G, Lindemann P, Lacapère JJ, Papadopoulos V. Protoporphyrin IX binding and transport by recombinant mouse PBR. Biochem Biophys Res Commun. 2003; 311:847–852. PMID: 14623258.
Article
27. Wilson BC, Jeeves WP, Lowe DM. In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochem Photobiol. 1985; 42:153–162. PMID: 4048297.
Article
28. Szacilowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G. Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev. 2005; 105:2647–2694. PMID: 15941225.
Article
29. O'Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol. 2009; 85:1053–1074. PMID: 19682322.
30. Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn Ther. 2010; 7:61–75. PMID: 20510301.
Article
31. Brandis AS, Salomon Y, Scherz A. Grimm B, Porra RJ, Rüdiger W, Scheer H, editors. Chlorophyll sensitizers in photodynamic therapy. Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. 2006. Dordrecht: Springer;p. 461–483.
Article
32. Pandey RK, Shiau FY, Sumlin AB, Dougherty TJ, Smith KM. Structure/activity relationships among photosensitizers related to pheophorbides and bacteriopheophorbides. Bioorg Med Chem Lett. 1992; 2:491–496.
Article
33. Bellnier DA, Henderson BW, Pandey RK, Potter WR, Dougherty TJ. Murine pharmacokinetics and antitumor efficacy of the photodynamic sensitizer 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a. J Photochem Photobiol B. 1993; 20:55–61. PMID: 8229470.
Article
34. Pandey RK, Sumlin AB, Constantine S, et al. Alkyl ether analogs of chlorophyll-a derivatives: part 1. synthesis, photophysical properties and photodynamic efficacy. Photochem Photobiol. 1996; 64:194–204. PMID: 8787014.
Article
35. Lobel J, MacDonald IJ, Ciesielski MJ, et al. 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) in a nude rat glioma model: implications for photodynamic therapy. Lasers Surg Med. 2001; 29:397–405. PMID: 11891727.
Article
36. Pandey RK, Herman CK. Shedding some light on tumours. Chem Ind. 1998; 18:739–743.
37. Clinicaltrials.gov. Photodynamic Therapy Using HPPH in Treating Patients With Advanced Non-Small Cell Lung Cancer That Blocks the Air Passages [Internet]. 2013. updated 2013 Jan 10; cited 2013 Jan 21. Bethesda: The U.S. National Institutes of Health;Available from: http://clinicaltrials.gov/ct2/show/NCT00528775.
38. Matsumura H, Akimoto J, Haraoka J, Aizawa K. Uptake and retention of the photosensitizer mono-L-asparthyl chlorine e6 in experimental malignant glioma. Lasers Med Sci. 2008; 23:237–245. PMID: 17703335.
Article
39. Kennedy JC, Nadeau P, Petryka ZJ, Pottier RH, Weagle G. Clearance times of porphyrin derivatives from mice as measured by in vivo fluorescence spectroscopy. Photochem Photobiol. 1992; 55:729–734. PMID: 1528987.
Article
40. Ando T, Irie K, Koshimizu K, et al. Synthesis, physicochemical properties and photocytotoxicity of five new δ-substituted chlorin e6 derivatives. Tetrahedron. 1990; 46:5921–5930.
Article
41. Kato H, Furukawa K, Sato M, et al. Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer. 2003; 42:103–111. PMID: 14512194.
Article
42. Kujundzić M, Vogl TJ, Stimac D, et al. A Phase II safety and effect on time to tumor progression study of intratumoral light infusion technology using talaporfin sodium in patients with metastatic colorectal cancer. J Surg Oncol. 2007; 96:518–524. PMID: 17671969.
43. Hoober JK, Sery TW, Yamamoto N. Photodynamic sensitizers from chlorophyll: purpurin-18 and chlorin p6. Photochem Photobiol. 1988; 48:579–582. PMID: 3241831.
44. Zenkevich E, Sagun E, Knyukshto V, et al. Photophysical and photochemical properties of potential porphyrin and chlorin photosensitizers for PDT. J Photochem Photobiol B. 1996; 33:171–180.
Article
45. Zheng G, Aoudia M, Lee D, et al. Chlorin-based symmetrical and unsymmetrical dimers with amide linkages: effect of the substituents on photodynamic and photophysical properties. J Chem Soc Perkin Trans 1. 2000; (24):3113–3121.
Article
46. Smith KM, Lee SJ, Shiau FY, Pandey RK, Jagerovic N. Spinelli P, Dal Fante M, Marchesini R, editors. Syntheses of chlorin and bacteriochlorin-type photosensitizers for photodynamic therapy. Photodynamic Therapy and Biomedical Lasers. 1992. Amsterdam: Elsevier Science Publishers B.V.;p. 769–773.
47. Pandey RK, Goswami LN, Chen Y, et al. Nature: a rich source for developing multifunctional agents. Tumor-imaging and photodynamic therapy. Lasers Surg Med. 2006; 38:445–467. PMID: 16788930.
Article
48. Zheng G, Potter WR, Sumlin A, Dougherty TJ, Pandey RK. Photosensitizers related to purpurin-18-N-alkylimides: a comparative in vivo tumoricidal ability of ester versus amide functionalities. Bioorg Med Chem Lett. 2000; 10:123–127. PMID: 10673094.
49. Pandey RK, James NS, Chen Y, Missert J, Sajjad M. Bifunctional agents for imaging and therapy. Methods Mol Biol. 2010; 635:223–259. PMID: 20552351.
Article
50. Pandey RK, Constantine S, Tsuchida T, et al. Synthesis, photophysical properties, in vivo photosensitizing efficacy, and human serum albumin binding properties of some novel bacteriochlorins. J Med Chem. 1997; 40:2770–2779. PMID: 9276023.
Article
51. Mettath S, Shibata M, Alderfer JL, et al. Synthesis and spectroscopic properties of novel benzochlorins derived from chlorophyll a. J Org Chem. 1998; 63:1646–1656.
Article
52. Li G, Graham A, Chen Y, et al. Synthesis, comparative photosensitizing efficacy, human serum albumin (site II) binding ability, and intracellular localization characteristics of novel benzobacteriochlorins derived from vic-dihydroxybacteriochlorins. J Med Chem. 2003; 46:5349–5359. PMID: 14640543.
Article
53. Zheng X, Pandey RK. Porphyrin-carbohydrate conjugates: impact of carbohydrate moieties in photodynamic therapy (PDT). Anticancer Agents Med Chem. 2008; 8:241–268. PMID: 18393785.
Article
54. Shadidi M, Sioud M. Selective targeting of cancer cells using synthetic peptides. Drug Resist Updat. 2003; 6:363–371. PMID: 14744500.
Article
55. Polo L, Valduga G, Jori G, Reddi E. Low-density lipoprotein receptors in the uptake of tumour photosensitizers by human and rat transformed fibroblasts. Int J Biochem Cell Biol. 2002; 34:10–23. PMID: 11733181.
Article
56. Vrouenraets MB, Visser GW, Loup C, et al. Targeting of a hydrophilic photosensitizer by use of internalizing monoclonal antibodies: a new possibility for use in photodynamic therapy. Int J Cancer. 2000; 88:108–114. PMID: 10962447.
Article
57. Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev. 2008; 60:1627–1637. PMID: 18930086.
Article
58. Greco F, Vicent MJ. Polymer-drug conjugates: current status and future trends. Front Biosci. 2008; 13:2744–2756. PMID: 17981750.
Article
59. Zhang M, Zhang Z, Blessington D, et al. Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporters. Bioconjug Chem. 2003; 14:709–714. PMID: 12862422.
Article
60. Pandey SK, Zheng X, Morgan J, et al. Purpurinimide carbohydrate conjugates: effect of the position of the carbohydrate moiety in photosensitizing efficacy. Mol Pharm. 2007; 4:448–464. PMID: 17373821.
Article
61. Zheng X, Morgan J, Pandey SK, et al. Conjugation of 2-(1'-hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to carbohydrates changes its subcellular distribution and enhances photodynamic activity in vivo. J Med Chem. 2009; 52:4306–4318. PMID: 19507863.
Article
62. Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer. 2005; 5:29–41. PMID: 15630413.
Article
63. Stefflova K, Li H, Chen J, Zheng G. Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent. Bioconjug Chem. 2007; 18:379–388. PMID: 17298029.
Article
64. Chen J, Jarvi M, Lo PC, Stefflova K, Wilson BC, Zheng G. Using the singlet oxygen scavenging property of carotenoid in photodynamic molecular beacons to minimize photodamage to non-targeted cells. Photochem Photobiol Sci. 2007; 6:1311–1317. PMID: 18046487.
Article
65. Ogura S, Yazaki K, Yamaguchi K, Kamachi T, Okura I. Localization of poly-L-lysine-photosensitizer conjugate in nucleus. J Control Release. 2005; 103:1–6. PMID: 15773061.
Article
66. Tijerina M, Kopecková P, Kopecek J. Correlation of subcellular compartmentalization of HPMA copolymer-Mce6 conjugates with chemotherapeutic activity in human ovarian carcinoma cells. Pharm Res. 2003; 20:728–737. PMID: 12751627.
67. Gariépy J. The use of Shiga-like toxin 1 in cancer therapy. Crit Rev Oncol Hematol. 2001; 39:99–106. PMID: 11418306.
Article
68. Tarragó-Trani MT, Jiang S, Harich KC, Storrie B. Shiga-like toxin subunit B (SLTB)-enhanced delivery of chlorin e6 (Ce6) improves cell killing. Photochem Photobiol. 2006; 82:527–537. PMID: 16613509.
Article
69. Zheng G, Li H, Zhang M, Lund-Katz S, Chance B, Glickson JD. Lowdensity lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer. Bioconjug Chem. 2002; 13:392–396. PMID: 12009925.
Article
70. Nikolaeva IA, Misharin AY, Ponomarev GV, Timofeev VP, Tkachev YV. Chlorin e6-cholesterol conjugate and its copper complex. Simple synthesis and entrapping in phospholipid vesicles. Bioorg Med Chem Lett. 2010; 20:2872–2875. PMID: 20356740.
Article
71. Roy I, Ohulchanskyy TY, Pudavar HE, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc. 2003; 125:7860–7865. PMID: 12823004.
Article
72. Ohulchanskyy TY, Roy I, Goswami LN, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett. 2007; 7:2835–2842. PMID: 17718587.
Article
73. Cinteza LO, Ohulchanskyy TY, Sahoo Y, Bergey EJ, Pandey RK, Prasad PN. Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy. Mol Pharm. 2006; 3:415–423. PMID: 16889435.
Article
74. Hynninen PH. Scheer H, editor. Chemistry of chlorophylls: Modifications. Chlorophylls. 1991. Boca Raton: CRC Press;p. 145–209.
75. Smith KM, Goff DA, Simpson DJ. The meso substitution of chlorophyll derivatives: direct route for transformation of bacteriopheophorbides d into bacteriopheophorbides c. J Am Chem Soc. 1985; 107:4946–4954.
Article
76. Falk JE, Smith KM. Porphyrins and Metalloporphyrins. 1975. Amsterdam: Elsevier.
77. Tamiaki H, Amakawa M, Shimono Y, Tanikaga R, Holzwarth AR, Schaffner K. Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria. Photochem Photobiol. 1996; 63:92–99.
Article
78. Kozyrev AN, Zheng G, Lazarou E, Dougherty TJ, Smith KM, Pandey RK. Syntheses of emeraldin and purpurin-18 analogs as target-specific photosensitizers for photodynamic therapy. Tetrahedron Lett. 1997; 38:3335–3338.
Article
79. Rungta A, Zheng G, Missert JR, Potter WR, Dougherty TJ, Pandey RK. Purpurinimides as photosensitizers: effect of the presence and position of the substituents in the in vivo photodynamic efficacy. Bioorg Med Chem Lett. 2000; 10:1463–1466. PMID: 10888333.
Article
80. Spikes JD, Bommer JC. Photobleaching of mono-L-aspartyl chlorin e6 (NPe6): a candidate sensitizer for the photodynamic therapy of tumors. Photochem Photobiol. 1993; 58:346–350. PMID: 8234467.
81. Li G, Slansky A, Dobhal MP, et al. Chlorophyll-a analogues conjugated with aminobenzyl-DTPA as potential bifunctional agents for magnetic resonance imaging and photodynamic therapy. Bioconjug Chem. 2005; 16:32–42. PMID: 15656573.
Article
82. Weiss C. Dolphin D, editor. Electronic absorption spectra of chlorophylls. The Porphyrins. 1978. New York: Academic Press;p. 211–223.
Article
83. Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater. 2004; 16:1685–1706.
Article
84. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006; 58:1532–1555. PMID: 17092599.
Article
85. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008; 41:1578–1586. PMID: 18447366.
Article
86. Cheng Y, Meyers JD, Broome AM, Kenney ME, Basilion JP, Burda C. Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates. J Am Chem Soc. 2011; 133:2583–2591. PMID: 21294543.
Article
87. Giernoth R. Task-specific ionic liquids. Angew Chem Int Ed Engl. 2010; 49:2834–2839. PMID: 20229544.
Article
88. Wasserscheid P, Welton T. Ionic Liquids in Synthesis. 2003. Weinheim: Wiley-VCH.
89. Itoh H, Naka K, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc. 2004; 126:3026–3027. PMID: 15012113.
Article
90. Kim KS, Choi S, Cha JH, Yeon SH, Lee H. Facile one-pot synthesis of gold nanoparticles using alcohol ionic liquids. J Mater Chem. 2006; 16:1315–1317.
Article
91. Pegaz B, Debefve E, Borle F, et al. Preclinical evaluation of a novel water-soluble chlorin E6 derivative (BLC 1010) as photosensitizer for the closure of the neovessels. Photochem Photobiol. 2005; 81:1505–1510. PMID: 15960590.
Article
92. Sengee GI, Badraa N, Shim YK. Synthesis and biological evaluation of new imidazolium and piperazinium salts of pyropheophorbide-a for photodynamic cancer therapy. Int J Mol Sci. 2008; 9:1407–1415. PMID: 19325811.
Article
93. Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release. 2011; 149:65–71. PMID: 20004222.
Article
94. Demberelnyamba D, Ariunaa M, Shim YK. Newly synthesized water soluble cholinium-purpurin photosensitizers and their stabilized gold nanoparticles as promising anticancer agents. Int J Mol Sci. 2008; 9:864–871. PMID: 19325790.
Article
95. Lkhagvadulam B, Kim JH, Yoon I, Shim YK. Synthesis and photodynamic activities of novel water soluble purpurin-18-N-methyl-D-glucamine photosensitizer and its gold nanoparticles conjugate. J Porphyr Phthalocyanines. 2012; 16:331–340.
Article
96. Lkhagvadulam B, Kim JH, Yoon I, Shim YK. Size-dependent photodynamic activity of gold nanoparticles conjugate of water soluble purpurin-18-N-methyl-D-glucamine. BioMed Res Int. 2013; 2013:720579.
Article
97. Gamaleia NF, Shishko ED, Dolinsky GA, Shcherbakov AB, Usatenko AV, Kholin VV. Photodynamic activity of hematoporphyrin conjugates with gold nanoparticles: experiments in vitro. Exp Oncol. 2010; 32:44–47. PMID: 20332758.
98. Lottner C, Bart KC, Bernhardt G, Brunner H. Soluble tetraarylporphyrin-platinum conjugates as cytotoxic and phototoxic antitumor agents. J Med Chem. 2002; 45:2079–2089. PMID: 11985475.
Article
99. Lottner C, Bart KC, Bernhardt G, Brunner H. Hematoporphyrin-derived soluble porphyrin-platinum conjugates with combined cytotoxic and phototoxic antitumor activity. J Med Chem. 2002; 45:2064–2078. PMID: 11985474.
Article
100. Lottner C, Knuechel R, Bernhardt G, Brunner H. Combined chemotherapeutic and photodynamic treatment on human bladder cells by hematoporphyrin-platinum(II) conjugates. Cancer Lett. 2004; 203:171–180. PMID: 14732225.
Article
101. Hongrapipat J, Kopecková P, Liu J, Prakongpan S, Kopecek J. Combination chemotherapy and photodynamic therapy with fab' fragment targeted HPMA copolymer conjugates in human ovarian carcinoma cells. Mol Pharm. 2008; 5:696–709. PMID: 18729468.
Article
102. Frank J, Flaccus A, Schwarz C, Lambert C, Biesalski HK. Ascorbic acid suppresses cell death in rat DS-sarcoma cancer cells induced by 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med. 2006; 40:827–836. PMID: 16520235.
Article
103. Jakus J, Farkas O. Photosensitizers and antioxidants: a way to new drugs? Photochem Photobiol Sci. 2005; 4:694–698. PMID: 16121279.
Article
104. Kaliya OL, Lukyanets EA, Vorozhtsov GN. Catalysis and photocatalysis by phthalocyanines for technology, ecology and medicine. J Porphyr Phthalocyanines. 1999; 3:592–610.
Article
105. Shevchuk I, Chekulayev V, Chekulayeva L. Enhancement of the efficiency of photodynamic therapy of tumours by t-butyl-4-hydroxyanisole. J Photochem Photobiol B. 1998; 45:136–143. PMID: 9868804.
Article
106. Raish M, Husain SZ, Bae SM, et al. Photodynamic therapy in combination with green tea polyphenol EGCG enhances antitumor efficacy in human papillomavirus 16 (E6/E7) immortalized tumor cells. J Appl Res. 2010; 10:58–67.
107. Melnikova V, Bezdetnaya L, Belitchenko I, Potapenko A, Merlin JL, Guillemin F. Meta-tetra(hydroxyphenyl)chlorin-sensitized photodynamic damage of cultured tumor and normal cells in the presence of high concentrations of alpha-tocopherol. Cancer Lett. 1999; 139:89–95. PMID: 10408914.
108. Melnikova VO, Bezdetnaya LN, Brault D, Potapenko AY, Guillemin F. Enhancement of meta-tetrahydroxyphenylchlorin-sensitized photodynamic treatment on human tumor xenografts using a water-soluble vitamin E analogue, Trolox. Int J Cancer. 2000; 88:798–803. PMID: 11072251.
Article
109. Kriska T, Jakus J, Keszler A, Vanyur R, Nemeth A, Gal D. Ehrenberg B, Berg K, editors. Type III photosensitization: attempt for quantification and a way toward new sensitizers. Photochemotherapy of Cancer and Other Diseases. 1999. Vol. 3563. [place unknown]: SPIE Proceedings;p. 11–17.
110. Ashkenazi H, Nitzan Y, Gál D. Photodynamic effects of antioxidant substituted porphyrin photosensitizers on gram-positive and -negative bacterial. Photochem Photobiol. 2003; 77:186–191. PMID: 12785058.
111. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003; 36:R167–R181.
Article
112. Park JH, von Maltzahn G, Ong LL, et al. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater. 2010; 22:880–885. PMID: 20217810.
Article
113. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001; 19:316–317. PMID: 11283581.
Article
114. Lee J, Yang J, Ko H, et al. Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv Funct Mater. 2008; 18:258–264.
Article
115. Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007; 7:941–945. PMID: 17335272.
Article
116. Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 2009; 3:3707–3713. PMID: 19877694.
Article
117. Melancon MP, Elliott AM, Shetty A, Huang Q, Stafford RJ, Li C. Nearinfrared light modulated photothermal effect increases vascular perfusion and enhances polymeric drug delivery. J Control Release. 2011; 156:265–272. PMID: 21763373.
Article
118. Ke H, Wang J, Dai Z, et al. Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew Chem Int Ed Engl. 2011; 50:3017–3021. PMID: 21404389.
Article
119. Yang J, Choi J, Bang D, et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew Chem Int Ed Engl. 2011; 50:441–444. PMID: 21132823.
Article
120. Passos SK, Tedesco AC, Eid DR, Lacava ZG. Bowen disease treated with PDT using ALA in nanostructured vehicle and two light deliveries: a case report. J Am Acad Dermatol. 2011; 64(2 Suppl 1):AB141.
121. Kruijt B, van der, Sterenborg HJ, Amelink A, Robinson DJ. A dedicated applicator for light delivery and monitoring of PDT of intra-anal intraepithelial neoplasia. Photodiagnosis Photodyn Ther. 2010; 7:3–9. PMID: 20230986.
Article
122. Mang TS. Light sources and delivery devices for photodynamic therapy. Photodiagnosis Photodyn Ther. 2009; 6:147.
Article
123. Mang TS. Lasers and light sources for PDT: past, present and future. Photodiagnosis Photodyn Ther. 2004; 1:43–48.
Article
124. Panjehpour M, Overholt BF, Haydek JM. Light sources and delivery devices for photodynamic therapy in the gastrointestinal tract. Gastrointest Endosc Clin N Am. 2000; 10:513–532. PMID: 10899261.
Article
125. Floyd TL. . Electric Circuit Fundamentals. 1991. 2nd ed. New York: Merrill.
126. Star WM, Wilson BC, Patterson MS. Henderson BW, Dougherty TJ, editors. Light delivery and optical dosimetry in photodynamic therapy of solid tumors. Photodynamic Therapy: Basic Principles and Clinical Applications. 1992. New York: M. Dekker;p. 335–368.
Article
127. Grossweiner LI. PDT light dosimetry revisited. J Photochem Photobiol B. 1997; 38:258–268. PMID: 9203389.
Article
128. Tudge SH, Kaye AH, Hill JS. Modulation of light delivery in photodynamic therapy of brain tumours. J Clin Neurosci. 1999; 6:227–232. PMID: 18639156.
Article
129. Madsen SJ, Sun CH, Tromberg BJ, Hirschberg H. Development of a novel indwelling balloon applicator for optimizing light delivery in photodynamic therapy. Lasers Surg Med. 2001; 29:406–412. PMID: 11891728.
Article
130. Nyst HJ, van Veen RL, Tan IB, et al. Performance of a dedicated light delivery and dosimetry device for photodynamic therapy of nasopharyngeal carcinoma: phantom and volunteer experiments. Lasers Surg Med. 2007; 39:647–653. PMID: 17886277.
Article
131. Kostenich G, Orenstein A, Roitman L, Malik Z, Ehrenberg B. In vivo photodynamic therapy with the new near-IR absorbing water soluble photosensitizer lutetium texaphyrin and a high intensity pulsed light delivery system. J Photochem Photobiol B. 1997; 39:36–42. PMID: 9210320.
Article
132. Lapchak PA, Salgado KF, Chao CH, Zivin JA. Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience. 2007; 148:907–914. PMID: 17693028.
Article
133. Usuda J, Ichinose S, Ishizumi T, et al. Outcome of photodynamic therapy using NPe6 for bronchogenic carcinomas in central airways >1.0 cm in diameter. Clin Cancer Res. 2010; 16:2198–2204. PMID: 20332318.
134. Cassidy CM, Tunney MM, Magee ND, et al. Drug and light delivery strategies for photodynamic antimicrobial chemotherapy (PACT) of pulmonary pathogens: a pilot study. Photodiagnosis Photodyn Ther. 2011; 8:1–6. PMID: 21333929.
Article
135. Friedberg JS, Skema C, Burdick J, Yodh AG, Carr SR, Culver JP. A novel technique for light delivery through branched or bent anatomic structures. J Thorac Cardiovasc Surg. 2003; 126:1963–1967. PMID: 14688713.
Article
136. Wang LW, Li LB, Li ZS, Chen YK, Hetzel FW, Huang Z. Self-expandable metal stents and trans-stent light delivery: are metal stents and photodynamic therapy compatible. Lasers Surg Med. 2008; 40:651–659. PMID: 18951422.
Article
137. Yang L, Wei Y, Xing D, Chen Q. Increasing the efficiency of photodynamic therapy by improved light delivery and oxygen supply using an anticoagulant in a solid tumor model. Lasers Surg Med. 2010; 42:671–679. PMID: 20740620.
Article
138. Mitra S, Foster TH. Carbogen breathing significantly enhances the penetration of red light in murine tumours in vivo. Phys Med Biol. 2004; 49:1891–1904. PMID: 15214531.
139. Xiao Z, Dickey D, Owen RJ, Tulip J, Moore R. Interstitial photodynamic therapy of the canine prostate using intra-arterial administration of photosensitizer and computerized pulsed light delivery. J Urol. 2007; 178:308–313. PMID: 17499802.
Article
140. Dickey D, Barajas O, Brown K, Tulip J, Moore RB. Radiance modelling using the P3 approximation. Phys Med Biol. 1998; 43:3559–3570. PMID: 9869032.
Article
141. Jankun J, Keck RW, Skrzypczak-Jankun E, Lilge L, Selman SH. Diverse optical characteristic of the prostate and light delivery system: implications for computer modelling of prostatic photodynamic therapy. BJU Int. 2005; 95:1237–1244. PMID: 15892808.
Article
142. Kostenich G, Babushkina T, Malik Z, Orenstein A. Photothermic treatment of pigmented B16 melanoma using a broadband pulsed light delivery system. Cancer Lett. 2000; 157:161–168. PMID: 10936676.
Article
Full Text Links
  • CE
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr