Ann Lab Med.  2014 Sep;34(5):367-371. 10.3343/alm.2014.34.5.367.

Working Towards Accreditation by the International Standards Organization 15189 Standard: How to Validate an In-house Developed Method an Example of Lead Determination in Whole Blood by Electrothermal Atomic Absorption Spectrometry

Affiliations
  • 1Laboratory of Biochemistry, Percy Military Hospital, Clamart, France. cgbiopercy@yahoo.fr
  • 2Laboratory of Biochemistry, Val de Grace Military Hospital, Paris, France.

Abstract

Laboratories working towards accreditation by the International Standards Organization (ISO) 15189 standard are required to demonstrate the validity of their analytical methods. The different guidelines set by various accreditation organizations make it difficult to provide objective evidence that an in-house method is fit for the intended purpose. Besides, the required performance characteristics tests and acceptance criteria are not always detailed. The laboratory must choose the most suitable validation protocol and set the acceptance criteria. Therefore, we propose a validation protocol to evaluate the performance of an in-house method. As an example, we validated the process for the detection and quantification of lead in whole blood by electrothermal absorption spectrometry. The fundamental parameters tested were, selectivity, calibration model, precision, accuracy (and uncertainty of measurement), contamination, stability of the sample, reference interval, and analytical interference. We have developed a protocol that has been applied successfully to quantify lead in whole blood by electrothermal atomic absorption spectrometry (ETAAS). In particular, our method is selective, linear, accurate, and precise, making it suitable for use in routine diagnostics.

Keyword

Validation; Lead; Atomic absorption spectrophotometry

MeSH Terms

Accreditation
Humans
Laboratories/standards
Lead/*blood/standards
Reference Standards
*Spectrophotometry, Atomic/standards
*Validation Studies as Topic
Lead

Reference

1. Guzel O, Guner EI. ISO 15189 accreditation: Requirements for quality and competence of medical laboratories, experience of a laboratory I. Clin Biochem. 2009; 42:274–278. PMID: 19863920.
Article
2. Li H, Adeli K. Laboratory quality regulations and accreditation standards in Canada. Clin Biochem. 2009; 42:249–255. PMID: 19863915.
Article
3. Plebani M. Appropriateness in programs for continuous quality improvement in clinical laboratories. Clin Chim Acta. 2003; 333:131–139.
Article
4. Laitinen P. Laboratory and quality regulations and accreditation standards in Finland. Clin Biochem. 2009; 42:312–313.
Article
5. Shin BM, Chae SL, Min WK, Lee WG, Lim YA, Lee do H, et al. The implementation and effects of a clinical laboratory accreditation program in Korea from 1999 to 2006. Korean J Lab Med. 2009; 29:163–170.
Article
6. Nichols JH. Verification of method performance for clinical laboratories. Adv Clin Chem. 2009; 47:121–137.
7. US Department of Health and Human Services. Guidance for industry: Bioanalytical method validation. 1st ed. Rockville: Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM);2001. p. 25.
8. National Association of Testing Authorities (NATA). Technical Note 17. Guidelines for the validation and verification of quantitative and qualitative test methods. 6th ed. Sydney: NATA;2013. p. 32.
9. COFRAC. SH GTA 04 Guide technique d'accréditation de vérification (portée A)/validation (portée B) des méthodes en biologie médicale. 1st ed. Paris: COFRAC;2011. p. 46.
10. AFNOR. XP-T 90-210 Qualité de l'eau-Protocole d'évaluation des performances d'une méthode alternative d'analyse physico-chimique quantitative par rapport à une méthode de référence. 1st ed. Paris: AFNOR;1999. p. 58.
11. Feinberg M. Labo-Stat: Guide de validation des méthodes d'analyse. 2nd ed. Paris: Lavoisier;2009. p. 361.
12. COFRAC. SH REF 20 Exigence specifique et recommandations d'accréditation en plombémie. 1st ed. Paris: COFRAC;2010. p. 36.
13. Labat L, Olichon D, Poupon J, Bost M, Hautfroid V, Moesch C, et al. Variability of blood lead determination for low levels near target values of 100 µg/L: a multicentric study. Ann Toxicol Anal. 2006; 18:297–304.
14. Izquierdo Álvarez S, Calvo Ruata ML, González López JM, García de Jalón Comet A, Escanero Marcén JF. Validation of determination of lead (Pb) in blood by electrothermal atomic absorption spectrometry (ETAAS) on the basis of interlaboratory comparison data. J Trace Elem Med Biol. 2007; 21:26–28.
Article
15. Olichon D, Labat L, Poupon J, Bost M, Haufroid V, Moesch C, et al. Analytical approach of the limit of quantification of blood lead testing: a multicentric study. Ann Toxicol Anal. 2007; 19:31–36.
16. Vassault A, Grafmeyer D, de Graeve J, Cohen R, Beaudonnet A, Bienvenu J. Analyses de biologie médicale: spécifications et normes d'acceptabilité à l'usage de la validation de techniques. Ann Biol Clin. 1999; 57:685–695.
17. Minchinela J, Ricós C, Perich C, Fernández-Calle P, Alvarez V, Domenech M, et al. Biological variation database, and quality specifications for imprecision, bias and total error (desirable and minimum). The 2012 update. Updated on 2012. http://www.westgard.com/biodatabase-2012-update.htm.
18. Kristiansen J. The guide to expression of uncertainty in measurement approach for estimating uncertainty: an appraisal. Clin Chem. 2003; 49:1822–1829.
19. COFRAC. SH GTA 14 Guide technique d'accreditation pour l'evaluation des incertitudes de mesure en biologie medicale. 1st ed. Paris: COFRAC;2011.
20. Cornelis R, Heinzow B, Herber RF, Molin Christensen JM, Poulsen OM, Sabbioni E, et al. Sample collection guidelines for trace elements in blood and urine. IUPAC Commission of Toxicology. J Trace Elem Med Biol. 1996; 10:103–127.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr