J Korean Med Sci.  2011 Sep;26(9):1185-1190. 10.3346/jkms.2011.26.9.1185.

Non-Dipper Status and Left Ventricular Hypertrophy as Predictors of Incident Chronic Kidney Disease

Affiliations
  • 1Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea. drryu@ewha.ac.kr
  • 2Division of Cardiology, Cardiovascular Center, Yonsei University College of Medicine, Seoul, Korea.
  • 3Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.

Abstract

We have hypothesized that non-dipper status and left ventricular hypertrophy (LVH) are associated with the development of chronic kidney disease (CKD) in non-diabetic hypertensive patients. This study included 102 patients with an estimated glomerular filtration rate (eGFR) > or = 60 mL/min/1.73 m2. Ambulatory blood pressure monitoring and echocardiography were performed at the beginning of the study, and the serum creatinine levels were followed. During the average follow-up period of 51 months, CKD developed in 11 patients. There was a significant difference in the incidence of CKD between dippers and non-dippers (5.0% vs 19.0%, P < 0.05). Compared to patients without CKD, patients with incident CKD had a higher urine albumin/creatinine ratio (52.3 +/- 58.6 mg/g vs 17.8 +/- 29.3 mg/g, P < 0.01), non-dipper status (72.7% vs 37.4%, P < 0.05), the presence of LVH (27.3% vs 5.5%, P < 0.05), and a lower serum HDL-cholesterol level (41.7 +/- 8.3 mg/dL vs 50.4 +/- 12.4 mg/dL, P < 0.05). Based on multivariate Cox regression analysis, non-dipper status and the presence of LVH were independent predictors of incident CKD. These findings suggest that non-dipper status and LVH may be the therapeutic targets for preventing the development of CKD in non-diabetic hypertensive patients.

Keyword

Blood Pressure Monitoring, Ambulatory; Hypertrophy, Left Ventricular; Renal Insufficiency, Chronic

MeSH Terms

Adult
Aged
Aged, 80 and over
Albumins/analysis
Blood Pressure
Blood Pressure Monitoring, Ambulatory
Cholesterol, HDL/blood
Chronic Disease
Creatinine/blood/urine
Cross-Sectional Studies
Female
Follow-Up Studies
Glomerular Filtration Rate
Humans
Hypertension/complications
Hypertrophy, Left Ventricular/complications/*diagnosis
Incidence
Kidney Diseases/epidemiology/*etiology/ultrasonography
Male
Middle Aged
*Predictive Value of Tests
Retrospective Studies

Reference

1. Pereira BJ. Optimization of pre-ESRD care: the key to improved dialysis outcomes. Kidney Int. 2000. 57:351–365.
2. Nissenson AR, Collins AJ, Hurley J, Petersen H, Pereira BJ, Steinberg EP. Opportunities for improving the care of patients with chronic renal insufficiency: current practice patterns. J Am Soc Nephrol. 2001. 12:1713–1720.
3. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA. 2004. 291:844–850.
4. Hanratty R, Chonchol M, Miriam Dickinson L, Beaty BL, Estacio RO, Mackenzie TD, Hurley LP, Linas SL, Steiner JF, Havranek EP. Incident chronic kidney disease and the rate of kidney function decline in individuals with hypertension. Nephrol Dial Transplant. 2010. 25:801–807.
5. Yoon SY, Pyun WB. Clinical significance of nighttime blood pressure. Korean J Med. 2011. 80:31–35.
6. Timio M, Venanzi S, Lolli S, Lippi G, Verdura C, Monarca C, Guerrini E. "Non-dipper" hypertensive patients and progressive renal insufficiency: a 3-year longitudinal study. Clin Nephrol. 1995. 43:382–387.
7. Davidson MB, Hix JK, Vidt DG, Brotman DJ. Association of impaired diurnal blood pressure variation with a subsequent decline in glomerular filtration rate. Arch Intern Med. 2006. 166:846–852.
8. Liu M, Takahashi H, Morita Y, Maruyama S, Mizuno M, Yuzawa Y, Watanabe M, Toriyama T, Kawahara H, Matsuo S. Non-dipping is a potent predictor of cardiovascular mortality and is associated with autonomic dysfunction in haemodialysis patients. Nephrol Dial Transplant. 2003. 18:563–569.
9. Elias MF, Sullivan LM, Elias PK, D'Agostino RB Sr, Wolf PA, Seshadri S, Au R, Benjamin EJ, Vasan RS. Left ventricular mass, blood pressure, and lowered cognitive performance in the Framingham offspring. Hypertension. 2007. 49:439–445.
10. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990. 322:1561–1566.
11. Levin A, Singer J, Thompson CR, Ross H, Lewis M. Prevalent left ventricular hypertrophy in the predialysis population: identifying opportunities for intervention. Am J Kidney Dis. 1996. 27:347–354.
12. Shlipak MG, Fried LF, Cushman M, Manolio TA, Peterson D, Stehman-Breen C, Bleyer A, Newman A, Siscovick D, Psaty B. Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA. 2005. 293:1737–1745.
13. Tsioufis C, Kokkinos P, Macmanus C, Thomopoulos C, Faselis C, Doumas M, Stefanadis C, Papademetriou V. Left ventricular hypertrophy as a determinant of renal outcome in patients with high cardiovascular risk. J Hypertens. 2010. 28:2299–2308.
14. Seo HS, Kang TS, Park S, Choi EY, Ko YG, Choi D, Ha J, Rim SJ, Chung N. Non-dippers are associated with adverse cardiac remodeling and dysfunction (R1). Int J Cardiol. 2006. 112:171–177.
15. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999. 130:461–470.
16. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986. 57:450–458.
17. Freedman BI, Sedor JR. Hypertension-associated kidney disease: perhaps no more. J Am Soc Nephrol. 2008. 19:2047–2051.
18. Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, Coresh J, Patterson N, Tandon A, Powe NR, Fink NE, Sadler JH, Weir MR, Abboud HE, Adler SG, Divers J, Iyengar SK, Freedman BI, Kimmel PL, Knowler WC, Kohn OF, Kramp K, Leehey DJ, Nicholas SB, Pahl MV, Schelling JR, Sedor JR, Thornley-Brown D, Winkler CA, Smith MW, Parekh RS. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet. 2008. 40:1185–1192.
19. Farmer CK, Goldsmith DJ, Cox J, Dallyn P, Kingswood JC, Sharpstone P. An investigation of the effect of advancing uraemia, renal replacement therapy and renal transplantation on blood pressure diurnal variability. Nephrol Dial Transplant. 1997. 12:2301–2307.
20. Li Kam Wa TC, Macnicol AM, Watson ML. Ambulatory blood pressure in hypertensive patients with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 1997. 12:2075–2080.
21. Csiky B, Kovács T, Wágner L, Vass T, Nagy J. Ambulatory blood pressure monitoring and progression in patients with IgA nephropathy. Nephrol Dial Transplant. 1999. 14:86–90.
22. Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, Batlle D. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002. 347:797–805.
23. Agarwal R, Andersen MJ. Prognostic importance of ambulatory blood pressure recordings in patients with chronic kidney disease. Kidney Int. 2006. 69:1175–1180.
24. Smilde TD, Asselbergs FW, Hillege HL, Voors AA, Kors JA, Gansevoort RT, van Gilst WH, de Jong PE, Van Veldhuisen DJ. Mild renal dysfunction is associated with electrocardiographic left ventricular hypertrophy. Am J Hypertens. 2005. 18:342–347.
25. Aurigemma GP, Gaasch WH. Clinical practice. Diastolic heart failure. N Engl J Med. 2004. 351:1097–1105.
26. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000. 102:1788–1794.
27. Mänttäri M, Tiula E, Alikoski T, Manninen V. Effects of hypertension and dyslipidemia on the decline in renal function. Hypertension. 1995. 26:670–675.
28. Muntner P, Coresh J, Smith JC, Eckfeldt J, Klag MJ. Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int. 2000. 58:293–301.
29. Elung-Jensen T, Strandgaard S, Kamper AL. Longitudinal observations on circadian blood pressure variation in chronic kidney disease stages 3-5. Nephrol Dial Transplant. 2008. 23:2873–2878.
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr