J Cardiovasc Ultrasound.  2009 Sep;17(3):86-95. 10.4250/jcu.2009.17.3.86.

Therapeutic Strategies for Diastolic Dysfunction: A Clinical Perspective

Affiliations
  • 1Division of Cardiology, Yonsei University College of Medicine, Seoul, Korea. jwha@yuhs.ac
  • 2Division of Cardiovascular Diseases, Mayo Clinic, Rochester, USA.

Abstract

Diastolic dysfunction, which is increasingly viewed as being influential in precipitating heart failure and determining prognosis, is often unrecognized and has therapeutic implications distinct from those that occur with systolic dysfunction. In this review, several therapeutic modalities including pharmacologic, nonpharmacologic, and surgical approaches for primary diastolic dysfunction and heart failure will be discussed.

Keyword

Diastolic dysfunction; Therapy

MeSH Terms

Heart Failure
Prognosis

Figure

  • Fig. 1 A: Mitral inflow and annular velocities during the acute episode of shortness of breath with severe hypertension. The E/A ratio > 1.5, shortened deceleration time and reduced early diastolic mitral annular velocity suggestive of pseudonormal mitral inflow pattern. E/E' ratio of 33 indicating elevated left ventricular filling pressures. B: Transmitral inflow velocity after normalization of blood pressure (130/80 mmHg). The E/A ratio < 1 and prolonged deceleration time indicating delayed relaxation, more improved diastolic dysfunction. E: early diastolic mitral flow velocity, A: mitral flow velocity during atrial contraction, E': early diastolic mitral annular velocity, A': mitral annular velocity during atrial contraction.

  • Fig. 2 Doppler echocardiographic finding of mitral flow velocity in different atrioventricular interval. Note the separation of early and late filling velocities at shorter atrioventricular interval. AV: artrial ventricular.

  • Fig. 3 Schematic diagram illustrating therapeutic approaches based on the degree of diastolic dysfunction. LV: left ventricle, LVH: left ventricular Hypertrophy, DM: diabetes mellitus, CAD: coronary artery disease, DOE: dyspnea on exertion, ACE: angiotensin converting enzyme, ARB: angiotensin receptor blocker, NYHA: New York Heart Association, HF: heart failure.


Reference

1. Mitsunami K, Inoue S, Maeda K, Endoh S, Takahashi M, Okada M, Sugihara H, Kinoshita M. Three-month effects of can-desartan cilexetil, an angiotensin II type 1 (AT1) receptor antagonist, on left ventricular mass and hemodynamics in patients with essential hypertension. Cardiovasc Drugs Ther. 1998. 12:469–474.
2. Angomachalelis N, Hourzamanis AI, Sideri S, Serasli E, Vamvalis C. Improvement of left ventricular diastolic dysfunction in hypertensive patients 1 month after ACE inhibition therapy: evaluation by ultrasonic automated boundary detection. Heart Vessels. 1996. 11:303–309.
Article
3. Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000. 102:1388–1393.
Article
4. López B, Querejeta R, Varo N, González A, Larman M, Martínez Ubago JL, Díez J. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation. 2001. 104:286–291.
Article
5. Díez J, Querejeta R, López B, Gonzalez A, Larman M, Martinez Ubago JL. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002. 105:2512–2517.
Article
6. Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H. LIFE Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002. 359:995–1003.
Article
7. Kahan T. The importance of left ventricular hypertrophy in human hypertension. J Hypertens Suppl. 1998. 16:S23–S29.
8. Warner JG Jr, Metzger DC, Kitzman DW, Wesley DJ, Little WC. Losartan improves exercise tolerance in patients with diastolic dysfunction and a hypertensive response to exercise. J Am Coll Cardiol. 1999. 33:1567–1572.
Article
9. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, Michelson EL, Olofsson B, Ostergren J. CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARMPreserved Trial. Lancet. 2003. 362:777–781.
Article
10. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, Anderson S, Donovan M, Iverson E, Staiger C, Ptaszynska A. I-PRESERVE Investigators. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008. 359:2456–2467.
Article
11. Dumesnil JG, Gaudreault G, Honos GN, Kingma JG Jr. Use of Valsalva maneuver to unmask left ventricular diastolic function abnormalities by Doppler echocardiography in patients with coronary artery disease or systemic hypertension. Am J Cardiol. 1991. 68:515–519.
Article
12. Cheng CP, Igarashi Y, Little WC. Mechanism of augmented rate of left ventricular filling during exercise. Circ Res. 1992. 70:9–19.
Article
13. Gottdiener JS. Clinical trials of single-drug therapy for the cardiac effects of hypertension. Am J Hypertens. 1999. 12:12S–18S.
Article
14. Kass DA, Wolff MR, Ting CT, Liu CP, Chang MS, Lawrence W, Maughan WL. Diastolic compliance of hypertrophied ventricle is not acutely altered by pharmacologic agents influencing active processes. Ann Intern Med. 1993. 119:466–473.
Article
15. Nishimura RA, Schwartz RS, Holmes DR Jr, Tajik AJ. Failure of calcium channel blockers to improve ventricular relaxation in humans. J Am Coll Cardiol. 1993. 21:182–188.
Article
16. Setaro JF, Zaret BL, Schulman DS, Black HR, Soufer R. Usefulness of verapamil for congestive heart failure associated with abnormal left ventricular diastolic filling and normal left ventricular systolic performance. Am J Cardiol. 1990. 66:981–986.
Article
17. Betocchi S, Chiariello M. Effects of calcium antagonists on left ventricular structure and function. J Hypertens Suppl. 1993. 11:S33–S37.
Article
18. Iliceto S. Left ventricular dysfunction: which role for calcium antagonists? Eur Heart J. 1997. 18:Suppl A. A87–A91.
Article
19. Ramirez Gil JF, Delcayre C, Robert V, Wassef M, Trouve P, Mougenot N, Charlemagen D, Lechat P. In vivo left ventricular function and collagen expression in aldosterone/salt-induced hypertension. J Cardiovasc Pharmacol. 1998. 32:927–934.
Article
20. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999. 341:709–717.
Article
21. Silvestre JS, Heymes C, Oubénaissa A, Robert V, Aupetit-Faisant B, Carayon A, Swynghedauw B, Delcayre C. Activation of cardiac aldosterone production in rat myocardial infarction: effect of angiotensin II receptor blockade and role in cardiac fibrosis. Circulation. 1999. 99:2694–2701.
Article
22. Degre S, Detry JM, Unger P, Cosyns J, Brohet C, Kormoss N. Effects of spironolactone-altizide on left ventricular hypertrophy. Acta Cardiol. 1998. 53:261–267.
23. Paulus WJ, Vantrimpont PJ, Shah AM. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation. 1994. 89:2070–2078.
Article
24. Kojda G, Kottenberg K. Regulation of basal myocardial function by NO. Cardiovasc Res. 1999. 41:514–523.
Article
25. Matter CM, Mandinov L, Kaufmann PA, Vassalli G, Jiang Z, Hess OM. Effect of NO donors on LV diastolic function in patients with severe pressure-overload hypertrophy. Circulation. 1999. 99:2396–2401.
Article
26. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997. 336:525–533.
27. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988. 332:411–415.
Article
28. Hirata Y, Takagi Y, Fukuda Y, Marumo F. Endothelin is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis. 1989. 78:225–228.
Article
29. Krum H, Goldsmith R, Wilshire-Clement M, Miller M, Packer M. Role of endothelin in the exercise intolerance of chronic heart failure. Am J Cardiol. 1995. 75:1282–1283.
Article
30. Cheng CP, Ukai T, Onishi K, Ohte N, Suzuki M, Zhang ZS, Cheng HJ, Tachibana H, Igawa A, Little WC. The role of ANG II and endothelin-1 in exercise-induced diastolic dysfunction in heart failure. Am J Physiol Heart Circ Psysiol. 2001. 280:H1853–H1860.
Article
31. Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocyte. Circ Res. 1994. 74:970–978.
Article
32. Yamamoto K, Burnett JC Jr, Redfield MM. Effect of the endogenous natriuretic peptide system on ventricular and coronary function in failing heart. Am J Physiol. 1997. 273:H2406–H2414.
33. Clarkson PB, Wheeldon NM, MacFadyen RJ, Pringle SD, MacDonald TM. Effects of brain natriuretic peptide on exercise hemodynamics and neurohormones in isolated diastolic heart failure. Circulation. 1996. 93:2037–2042.
Article
34. Oi S, Haneda T, Osaki J, Kashiwagi Y, Nakamura Y, Kawabe J, Kikuchi K. Lovastatin prevents angiotensin II-induced cardiac hypertrophy in cultured neonatal rat heart cells. Eur J Pharmacol. 1999. 376:139–148.
Article
35. Luo JD, Zhang WW, Zhang GP, Guan JX, Chen X. Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol Physiol. 1999. 26:903–908.
Article
36. Hernández-Perera O, Pérez-Sala D, Soria E, Lamas S. Involvement of Rho GTPases in the transcriptional inhibition of preproendothelin-1 gene expression by simvastatin in vascular endothelial cells. Circ Res. 2000. 87:616–622.
Article
37. Park HJ, Galper JB. 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors up-regulate transforming growth factor-beta signaling in cultured heart cells via inhibition of geranylgeranylation of RhoA GTPase. Proc Natl Acad Sci U S A. 1999. 96:11525–11530.
Article
38. Guijarro C, Blanco-Colio LM, Ortego M, Alonso C, Ortiz A, Plaza JJ, Diaz C, Hernández G, Egido J. 3-Hydroxy-3-methylglutaryl coenzyme a reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Circ Res. 1998. 83:490–500.
Article
39. Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, Quinones MA, Zoghbi WA, Entman ML, Roberts R, Marian AJ. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation. 2001. 104:317–324.
Article
40. Sugden PH, Clerk A. "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998. 83:345–352.
Article
41. Spurgeon HA, Steinbach MF, Lakatta EG. Chronic exercise prevents characteristic age-related changes in rat cardiac contraction. Am J Physiol. 1983. 244:H513–H518.
Article
42. Starnes JW, Beyer RE, Edington DW. Myocardial adaptations to endurance exercise in aged rats. Am J Physiol. 1983. 245:H560–H566.
Article
43. Gwathmey JK, Slawsky MT, Perreault CL, Briggs GM, Morgan JP, Wei JY. The effect of exercise conditioning on excitation-contraction coupling in aged rat. J Appl Physiol. 1990. 69:1366–1371.
Article
44. Tate CA, Taffet GE, Hudson EK, Blaylock SL, McBride RP, Michael LH. Enhanced calcium uptake of cardiac sarcoplasmic reticulum in exercise-trained old rats. Am J Physiol. 1990. 258:H431–H435.
Article
45. Colan SD, Sanders SP, MacPherson D, Borow KM. Left ventricular diastolic function in elite athletes with physiologic cardiac hypertrophy. J Am Coll Cardiol. 1985. 6:545–549.
Article
46. Douglas PA, O'Toole ML, Hiller WB, Reichek N. Left ventricular structure and function by echocardiography in ultraendurance athletes. Am J Cardiol. 1986. 58:805–809.
Article
47. Nixon JV, Wright AR, Porter TR, Roy V, Arrowood JA. Effects of exercise on left ventricular diastolic performance in trained athletes. Am J Cardiol. 1991. 68:945–949.
Article
48. Matsuda M, Sugishita Y, Koseki S, Ito I, Akatsuka T, Takamatsu K. Effect of exercise on left ventricular diastolic filling in athletes and nonathletes. J Appl Physiol. 1983. 55:323–328.
Article
49. Forman DE, Manning WJ, Hauser R, Gervino EV, Evans WJ, Wei JY. Enhanced left ventricular diastolic filling associated with long-term endurance training. J Gerontol. 1992. 47:M56–M58.
Article
50. Takemoto KA, Bernstein L, Lopez JF, Marshak D, Rahimtoola SH, Chandraratna PA. Abnormalities of diastolic filling of the left ventricle associated with aging are less pronounced in exercise trained individuals. Am Heart J. 1992. 124:143–148.
Article
51. Douglas PS, O'Toole M. Aging and physical activity determine cardiac structure and function in the older athlete. J Appl Physiol. 1992. 72:1969–1973.
Article
52. Devereux RB, Palmieri V, Liu JE, Wachtell K, Bella JN, Boman K, Gerdts E, Nieminen MS, Papademetriou V, Dahlöf B. Progressive hypertrophy regression with sustained pressure reduction in hypertension: the Losartan Intervention For Endpoint Reduction study. J Hypertens. 2002. 20:1445–1450.
Article
53. Gandhi SK, Powers JC, Nomeir AM, Fowle K, Kitzman DW, Rankin KM, Little WC. The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med. 2001. 344:17–22.
Article
54. The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch Intern Med. 1997. 157:2413–2446.
55. Joffres MR, Ghadirian P, Fodor JG, Petrasovits A, Chockalingam A, Hamet P. Awareness, treatment, and control of hypertension in Canada. Am J Hypertens. 1997. 10:1097–1102.
Article
56. Colhoun HM, Dong W, Poulter NR. Blood pressure screening, management and control in England: results from the health survey for England 1994. J Hypertens. 1998. 16:747–752.
57. Liu CP, Ting CT, Lawrence W, Maughan WL, Chang MS, Kass DA. Diminished contractile response to increased heart rate in intact human left ventricular hypertrophy. Systolic versus diastolic determinants. Circulation. 1993. 88:1893–1906.
Article
58. Mulieri LA, Hasenfuss G, Leavitt B, Allen PD, Alpert NR. Altered myocardial force-frequency relation in human heart failure. Circulation. 1992. 85:1743–1750.
Article
59. Gwathmey JK, Warren SE, Briggs GM, Copelas L, Feldman MD, Phillips PJ, Callahan MJ, Schoen FJ, Grossman W, Morgan JP. Diastolic dysfunction in hypertrophic cardiomyopathy. Effect on active force generation during systole. J Clin Invest. 1991. 87:1023–1031.
Article
60. Levine HJ. Optimum heart rate of large failing hearts. Am J Cardiol. 1988. 61:633–636.
Article
61. Xiao HB, Brecker SJ, Gibson DG. Effects of abnormal activation on the time course of the left ventricular pressure pulse in dilated cardiomyopathy. Br Heart J. 1992. 68:403–407.
Article
62. Littmann L, Symanski JD. Hemodynamic implications of left bundle branch block. J Electrocardiol. 2000. 33:Suppl. 115–121.
Article
63. Saxon LA, Kerwin WF, Cahalan MK, Kalman JM, Olgin JE, Foster E, Schiller NB, Shinbane JS, Lesh MD, Merrick SH. Acute effects of intraoperative multisite ventricular pacing on left ventricular function and activation/contraction sequence in patients with depressed ventricular function. J Cardiovasc Electrophysiol. 1998. 9:13–21.
Article
64. Kerwin WF, Botvinick EH, O'Connell JW, Merrick SH, DeMarco T, Chatterjee K, Scheibly K, Saxon LA. Ventricular contraction abnormalities in dilated cardiomyopathy: effect of biventricular pacing to correct interventricular dyssynchrony. J Am Coll Cardiol. 2000. 35:1221–1227.
Article
65. Nishimura RA, Hayes DL, Holmes DR Jr, Tajik AJ. Mechanism of hemodynamic improvement by dual-chamber pacing for severe left ventricular dysfunction: an acute Doppler and catheterization hemodynamic study. J Am Coll Cardiol. 1995. 25:281–288.
Article
66. Panidis IP, Ross J, Munley B, Nestico P, Mintz GS. Diastolic mitral regurgitation in patients with atrioventricular conduction abnormalities: a common finding by Doppler echocardiography. J Am Coll Cardiol. 1986. 7:768–774.
Article
67. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic DZ, Packer M, Clavell AL, Hayes DL, Ellestad M, Trupp RJ, Underwood J, Pickering F, Truex C, McAtee P, Messenger J. MIRACLE Study Group. Multicenter InSync Randomized Clinical Evaluation. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002. 346:1845–1853.
Article
68. Wigle ED, Sasson Z, Henderson MA, Ruddy TD, Fulop J, Rakowski H, Williams WG. Hypertrophic cardiomyopathy. The importance of the site and the extent of hypertrophy. A review. Prog Cardiovasc Dis. 1985. 28:1–83.
Article
69. Betocchi S, Hess OM, Losi MA, Nonogi H, Krayenbuehl HP. Regional left ventricular mechanics in hypertrophic cardiomyopathy. Circulation. 1993. 88:2206–2214.
Article
70. Bonow RO, Vitale DF, Maron BJ, Bacharach SL, Frederick TM, Green MV. Regional left ventricular asynchrony and impaired global left ventricular filling in hypertrophic cardiomyopathy: effect of verapamil. J Am Coll Cardiol. 1987. 9:1108–1116.
Article
71. Severino S, Caso P, Galderisi M, De Simone L, Petrocelli A, de Divitiis O, Mininni N. Use of pulsed Doppler tissue imaging to assess regional left ventricular diastolic dysfunction in hypertrophic cardiomyopathy. Am J Cardiol. 1998. 82:1394–1398.
Article
72. Sigwart U. Non-surgical myocardial reduction for hypertrophic obstructive cardiomyopathy. Lancet. 1995. 346:211–214.
Article
73. Knight C, Kurbaan AS, Seggewiss H, Henein M, Gunning M, Harrington D, Fassbender D, Gleichmann U, Sigwart U. Non-surgical septal reduction for hypertrophic obstructive cardiomyopathy: outcome in the first series of patients. Circulation. 1997. 95:2075–2081.
Article
74. Lakkis NM, Nagueh SF, Kleiman NS, Killip D, He ZX, Verani MS, Roberts R, Spencer WH 3rd. Echocardiography-guided ethanol septal reduction for hypertrophic obstructive cardiomyopathy. Circulation. 1998. 98:1750–1755.
Article
75. McCully RB, Nishimura RA, Tajik AJ, Schaff HV, Danielson GK. Extent of clinical improvement after surgical treatment of hypertrophic obstructive cardiomyopathy. Circulation. 1996. 94:467–471.
Article
76. Seggewiss H, Gleichmann U, Faber L, Fassbender D, Schmidt HK, Strick S. Percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: acute results and 3-month follow-up in 25 patients. J Am Coll Cardiol. 1998. 31:252–258.
Article
77. Weisfeldt ML. Function of cardiac muscle in aging rat. Adv Exp Med Biol. 1975. 61:95–118.
Article
78. Weisfeldt ML. Aging of the cardiovascular system. N Engl J Med. 1980. 303:1172–1174.
Article
79. Weisfeldt M. Aging, changes in the cardiovascular system, and responses to stress. Am J Hypertens. 1998. 11:41S–45S.
Article
80. Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev. 1993. 73:413–467.
Article
81. Taffet GE, Michael LA, Tate CA. Exercise training improves lusitropy by isoproterenol in papillary muscles from aged rats. J Appl Physiol. 1996. 81:1488–1494.
Article
82. Takagishi Y, Rothery S, Issberner J, Levi A, Severs NJ. Spatial distribution of dihydropyridine receptors in the plasma membrane of guinea pig cardiac myocytes investigated by correlative confocal microscopy and label-fracture electron microscopy. J Electron Microsc (Tokyo). 1997. 46:165–170.
Article
83. Tate CA, Helgason T, Hyek MF, McBride RP, Chen M, Richardson MA, Taffet GE. SERCA2a and mitochondrial cytochrome oxidase expression are increased in hearts of exercise-trained old rats. Am J Physiol. 1996. 271:H68–H72.
Article
84. Schmidt U, del Monte F, Miyamoto MI, Matsui T, Gwathmey JK, Rosenzweig A, Hajjar RJ. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca2+-ATPase. Circulation. 2000. 101:790–796.
Article
85. Wahr PA, Michele DE, Metzger JM. Parvalbumin gene transfer corrects diastolic dysfunction in diseased cardiac myocytes. Proc Natl Acad Sci. 1999. 96:11982–11985.
Article
86. Celio MR, Heizmann CW. Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. Nature. 1982. 297:504–506.
Article
87. Hou TT, Johnson JD, Rall JA. Parvalbumin content and Ca2+ and Mg2+ dissociation rates correlated with changes in relaxation rate of frog muscle fibres. J Physiol. 1991. 441:285–304.
Article
88. Rall JA. Role of parvalbumin in skeletal muscle contraction. News in Physiological Science. 1996. 11:249–255.
89. Szatkowski ML, Westfall MV, Gomez CA, Wahr PA, Michele DE, DelloRusso C, Turner II, Hong KE, Albayya FP, Metzger JM. In vivo acceleration of heart relaxation performance by parvalbumin gene delivery. J Clin Invest. 2001. 107:191–198.
Article
90. Oh JK, Appleton CP, Hatle LK, Nishimura RA, Seward JB, Tajik AJ. The noninvasive assessment of left ventriclar diastolic function with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 1997. 10:246–270.
Article
91. Nishimura RA, Tajik AJ. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician's Rosetta Stone. J Am Coll Cardiol. 1997. 30:8–18.
Article
Full Text Links
  • JCU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr