J Bacteriol Virol.  2012 Sep;42(3):181-188. 10.4167/jbv.2012.42.3.181.

Staphylococcus aureus Membrane Vesicles and Its Potential Role in Bacterial Pathogenesis

Affiliations
  • 1Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea. leejc@knu.ac.kr

Abstract

The production of extracellular vesicles is a ubiquitous process in both Gram-negative and Gram-positive bacteria. Gram-negative bacteria produce and secrete outer membrane vesicles during in vitro culture and in vivo infection and their contribution to bacterial pathogenesis has been well characterized. However, little is known about extracellular vesicles in Gram-positive bacteria. Until now, only few Gram-positive bacterial species, Staphylococcus aureus, Bacillus anthracis, B. cereus, and B. subtilis, have been found to produce membrane vesicles (MVs), but their contribution to bacterial pathogenesis has not been understood. Here, I discuss S. aureus MVs in terms of MV production, interaction of MVs with host cells, and immune response against MVs to understand its potential role in S. aureus pathogenesis.

Keyword

Membrane vesicles; Bacterial pathogenesis; Virulence determinants; Proteomes

MeSH Terms

Bacillus anthracis
Gram-Negative Bacteria
Gram-Positive Bacteria
Membranes
Proteome
Staphylococcus
Staphylococcus aureus
Proteome

Figure

  • Figure 1 Membrane vesicle production in S. aureus. (A). Transmission electron micrograph (TEM) of MVs prepared from S. aureus ATCC 25923 cultured in Luria-Bertani broth. (B) Production and secretion of MVs from S. aureus 06ST1048 during in vivo infection. Mice were infected with S. aureus 06ST1048 intratracheally for 18 h. The infected lung tissues were prepared for TEM analysis. Arrows indicate MVs produced by S. aureus.


Reference

1. Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 2005. 19:2645–2655.
Article
2. Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev. 2010. 74:81–94.
Article
3. Beveridge TJ, Kadurugamuwa JL. Periplasm, periplasmic spaces, and their relation to bacterial wall structure: novel secretion of selected periplasmic proteins from Pseudomonas aeruginosa. Microb Drug Resist. 1996. 2:1–8.
Article
4. Mashburn-Warren LM, Whiteley M. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol. 2006. 61:839–846.
Article
5. Lee EY, Choi DS, Kim KP, Gho YS. Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev. 2008. 27:535–555.
Article
6. Wai SN, Lindmark B, Söderblom T, Takade A, Westermark M, Oscarsson J, et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell. 2003. 115:25–35.
Article
7. Kesty NC, Kuehn MJ. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. J Biol Chem. 2004. 279:2069–2076.
Article
8. Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O'Toole GA, Stanton BA. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 2009. 5:e1000382.
9. Kato S, Kowashi Y, Demuth DR. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog. 2002. 32:1–13.
Article
10. Beveridge TJ. Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol. 1999. 181:4725–4733.
Article
11. Mayrand D, Grenier D. Biological activities of outer membrane vesicles. Can J Microbiol. 1989. 35:607–613.
Article
12. Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature. 2005. 437:422–425.
Article
13. Galka F, Wai SN, Kusch H, Engelmann S, Hecker M, Schmeck B, et al. Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun. 2008. 76:1825–1836.
Article
14. Kwon SO, Gho YS, Lee JC, Kim SI. Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate. FEMS Microbiol Lett. 2009. 297:150–156.
Article
15. Horstman AL, Kuehn MJ. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem. 2000. 275:12489–12496.
Article
16. Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 2004. 23:4538–4549.
Article
17. Kolling GL, Matthews KR. Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl Environ Microbiol. 1999. 65:1843–1848.
Article
18. Lindmark B, Rompikuntal PK, Vaitkevicius K, Song T, Mizunoe Y, Uhlin BE, et al. Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol. 2009. 9:220.
19. Brandtzaeg P, Bryn K, Kierulf P, Ovstebø R, Namork E, Aase B, et al. Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy. J Clin Invest. 1992. 89:816–823.
Article
20. Halhoul N, Colvin JR. The ultrastructure of bacterial plaque attached to the gingiva of man. Arch Oral Biol. 1975. 20:115–118.
Article
21. Heczko U, Smith VC, Mark Meloche R, Buchan AM, Finlay BB. Characteristics of Helicobacter pylori attachment to human primary antral epithelial cells. Microbes Infect. 2000. 2:1669–1676.
Article
22. Namork E, Brandtzaeg P. Fatal meningococcal septicaemia with "blebbing" meningococcus. Lancet. 2002. 360:1741.
Article
23. Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012. 22:342–349.
Article
24. Raimondo F, Morosi L, Chinello C, Magni F, Pitto M. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 2011. 11:709–720.
Article
25. Choi DS, Lee JM, Park GW, Lim HW, Bang JY, Kim YK, et al. Proteomic analysis of microvesicles derived from human colorectal cancer cells. J Proteome Res. 2007. 6:4646–4655.
Article
26. Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell. 2007. 6:48–59.
Article
27. Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, et al. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell. 2008. 7:58–67.
Article
28. Dorward DW, Garon CF. DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria. Appl Environ Microbiol. 1990. 56:1960–1962.
Article
29. Rivera J, Cordero RJ, Nakouzi AS, Frases S, Nicola A, Casadevall A. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci U S A. 2010. 107:19002–19007.
Article
30. Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics. 2009. 9:5425–5436.
Article
31. Crossley KB, Archer GL. The staphylococci in human disease. 1997. New York: Churchill Livingstone;682.
32. Groom AV, Wolsey DH, Naimi TS, Smith K, Johnson S, Boxrud D, et al. Community-acquired methicillin-resistant Staphylococcus aureus in a rural American Indian community. JAMA. 2001. 286:1201–1205.
Article
33. Hiramatsu K, Cui L, Kuroda M, Ito T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2001. 9:486–493.
Article
34. Tiwari HK, Sen MR. Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect Dis. 2006. 6:156.
35. Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008. 46:S350–S359.
36. Foster TJ, Höök M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 1998. 6:484–488.
37. Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, et al. Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol Mol Biol Rev. 2004. 68:207–233.
Article
38. Gurung M, Moon DC, Choi CW, Lee JH, Bae YC, Kim J, et al. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS One. 2011. 6:e27958.
39. Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010. 64:163–184.
Article
40. Ellis TN, Leiman SA, Kuehn MJ. Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect Immun. 2010. 78:3822–3831.
Article
41. Jin JS, Kwon SO, Moon DC, Gurung M, Lee JH, Kim SI, et al. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS One. 2011. 6:e17027.
42. Hong SW, Kim MR, Lee EY, Kim JH, Kim YS, Jeon SG, et al. Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy. 2011. 66:351–359.
Article
43. Winkelmann RK, Rajka G. Atopic dermatitis and Hodgkin's disease. Acta Derm Venereol. 1983. 63:176–177.
44. Leung DY, Bieber T. Atopic dermatitis. Lancet. 2003. 361:151–160.
Article
45. Rajka G. Natural history and clinical manifestations of atopic dermatitis. Clin Rev Allergy. 1986. 4:3–26.
Article
46. Hauser C, Wuethrich B, Matter L, Wilhelm JA, Sonnabend W, Schopfer K. Staphylococcus aureus skin colonization in atopic dermatitis patients. Dermatologica. 1985. 170:35–39.
Article
47. Leung DY. Infection in atopic dermatitis. Curr Opin Pediatr. 2003. 15:399–404.
Article
48. Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol. 1974. 90:525–530.
Article
49. Matsui K, Nishikawa A. Percutaneous application of peptidoglycan from Staphylococcus aureus induces an increase in mast cell numbers in the dermis of mice. Clin Exp Allergy. 2005. 35:382–387.
Article
Full Text Links
  • JBV
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr