Ann Lab Med.  2012 Sep;32(5):355-358. 10.3343/alm.2012.32.5.355.

Evaluation of the Xpert Clostridium difficile Assay for the Diagnosis of Clostridium difficile Infection

Affiliations
  • 1Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea. hjkim12@yuhs.ac

Abstract

Infection with Clostridium difficile is a growing concern because of the increasing prevalence and spread of nosocomial infections. Emergence of the hypervirulent 027/NAP1/BI strain is also notable. Existing diagnostic methods have low sensitivity or are time-consuming. Therefore, establishing a rapid and accurate microbiological diagnostic assay is needed. We evaluated the Xpert C. difficile assay (Xpert CD assay; Cepheid, USA) to detect toxigenic C. difficile. This assay is a real-time multiplex PCR assay that can be used to detect toxigenic C. difficile strains and differentiate the C. difficile presumptive 027/NAP1/BI strain. A total of 253 loose stool specimens were collected and toxigenic cultures, VIDAS C. difficile A & B assays (VIDAS CDAB assay; bioMerieux, France), and the Xpert CD assay were performed. In comparison to toxigenic cultures, the sensitivity, specificity, and positive and negative predictive values were 100%, 94.6%, 83.1%, and 100%, respectively, for the Xpert CD assay and 40.8%, 98.0%, 100%, and 88.9%, respectively, for VIDAS CDAB assay. Because of the low prevalence of the PCR ribotype 027 in Korea, the evaluation of the usefulness of the Xpert CD assay for screening for the 027 strain was limited. The Xpert CD assay provides great sensitivity in diagnosing toxigenic C. difficile infection. In addition, this method has excellent usability because it is simple and fast.

Keyword

Clostridium difficile; Real-time PCR; Enzyme immunoassay

MeSH Terms

Clostridium Infections/*diagnosis/epidemiology/microbiology
Clostridium difficile/genetics/*isolation & purification/metabolism
Face/microbiology
Humans
Multiplex Polymerase Chain Reaction
Prevalence
Reagent Kits, Diagnostic/*standards
Sensitivity and Specificity

Reference

1. Kelly CP, LaMont JT. Clostridium difficile--more difficult than ever. N Engl J Med. 2008. 359:1932–1940.
2. McDonald LC, Killgore GE, Thompson A, Owens RC Jr, Kazakova SV, Sambol SP, et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med. 2005. 353:2433–2441.
3. Barbut F, Mastrantonio P, Delmée M, Brazier J, Kuijper E, Poxton I. Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates. Clin Microbiol Infect. 2007. 13:1048–1057.
4. Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005. 366:1079–1084.
5. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol. 2010. 31:431–455.
6. Planche T, Aghaizu A, Holliman R, Riley P, Poloniecki J, Breathnach A, et al. Diagnosis of Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infect Dis. 2008. 8:777–784.
7. Terhes G, Urbán E, Sóki J, Hamid KA, Nagy E. Community-acquired Clostridium difficile diarrhea caused by binary toxin, toxin A, and toxin B gene-positive isolates in Hungary. J Clin Microbiol. 2004. 42:4316–4318.
8. O'Neill GL, Ogunsola FT, Brazier JS, Duerden BI. Modification of a PCR ribotyping method for application as a routine typing scheme for Clostridium difficile. Anaerobe. 1996. 2:205–209.
9. Spigaglia P, Mastrantonio P. Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J Med Microbiol. 2004. 53:1129–1136.
10. Babady NE, Stiles J, Ruggiero P, Khosa P, Huang D, Shuptar S, et al. Evaluation of the Cepheid Xpert Clostridium difficile Epi assay for diagnosis of Clostridium difficile infection and typing of the NAP1 strain at a cancer hospital. J Clin Microbiol. 2010. 48:4519–4524.
11. Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis. 2008. 47:1162–1170.
12. Kim H, Lee Y, Moon HW, Lim CS, Lee K, Chong Y. Emergence of Clostridium difficile ribotype 027 in Korea. Korean J Lab Med. 2011. 31:191–196.
13. Kim H, Jeong SH, Roh KH, Hong SG, Kim JW, Shin MG, et al. Investigation of toxin gene diversity, molecular epidemiology, and antimicrobial resistance of Clostridium difficile isolated from 12 hospitals in South Korea. Korean J Lab Med. 2010. 30:491–497.
14. Huang H, Weintraub A, Fang H, Nord CE. Comparison of a commercial multiplex real-time PCR to the cell cytotoxicity neutralization assay for diagnosis of Clostridium difficile infections. J Clin Microbiol. 2009. 47:3729–3731.
15. Tenover FC, Akerlund T, Gerding DN, Goering RV, Boström T, Jonsson AM, et al. Comparison of strain typing results for Clostridium difficile isolates from North America. J Clin Microbiol. 2011. 49:1831–1837.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr