1. Brackett BG, Oliphant G. Capacitation of rabbit spermatozoa in vitro. Biol Reprod. 1975. 12:260–274.
2. Cheong HT, Takahashi Y, Kanagawa H. Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biol Reprod. 1993. 48:958–963.
Article
3. Cheong HT, Takahashi Y, Kanagawa H. Relationship between nuclear remodeling and subsequent development of mouse embryonic nuclei transferred to enucleated oocytes. Mol Reprod Dev. 1994. 37:138–145.
Article
4. Choi JY, Kim CI, Park CK, Yang BK, Cheong HT. Effect of activation time on the nuclear remodeling and
in vitro development of nuclear transfer embryos derived from bovine somatic cells. Mol Reprod Dev. 2004. 69:289–295.
Article
5. Collas P, Robl JM. Relationship between nuclear remodeling and development in nuclear transplant rabbit embryos. Biol Reprod. 1991. 45:455–465.
Article
6. Dai Y, Wang L, Wang H, Liu Y, Li N, Lyu Q, Keefe DL, Albertini DF, Liu L. Fate of centrosomes following somatic cell nuclear transfer (SCNT) in bovine oocytes. Reproduction. 2006. 131:1051–1061.
Article
7. Ito J, Hirabayashi M, Kato M, Takeuchi A, Ito M, Shimada M, Hochi S. Contribution of high p34cdc2 kinase activity to premature chromosome condensation of injected somatic cell nuclei in rat oocytes. Reproduction. 2005. 129:171–180.
Article
8. Ju JC, Tsay C, Ruan CW. Alterations and reversibility in the chromatin, cytoskeleton and development of pig oocytes treated with roscovitine. Mol Reprod Dev. 2003. 64:482–491.
Article
9. Kalt A, Schliwa M. Molecular components of the centrosome. Trends Cell Biol. 1993. 3:118–128.
Article
10. Kellogg DR, Moritz M, Alberts BM. The centrosome and cellular organization. Annu Rev Biochem. 1994. 63:639–674.
Article
11. Kikuchi K, Naito K, Noguchi J, Shimada A, Kaneko H, Yamashita M, Aoki F, Tojo H, Toyoda Y. Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes. Biol Reprod. 2000. 63:715–722.
Article
12. Kim JM, Ogura A, Nagata M, Aoki F. Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer. Biol Reprod. 2002. 67:760–766.
Article
13. Kwon DJ, Park CK, Yang BK, Cheong HT. Control of nuclear remodelling and subsequent
in vitro development and methylation status of porcine nuclear transfer embryos. Reproduction. 2008. 135:649–656.
Article
14. Lequarre AS, Marchandise J, Moreau B, Massip A, Donnay I. Cell cycle duration at the time of maternal zygotic transition for
in vitro produced bovine embryos: effect of oxygen tension and transcription inhibition. Biol Reprod. 2003. 69:1707–1713.
Article
15. Lonergan P, Faerge I, Hyttel PM, Boland M, Fair T. Ultrastructural modifications in bovine oocytes maintained in meiotic arrest
in vitro using roscovitine or butyrolactone. Mol Reprod Dev. 2003. 64:369–378.
Article
16. Ma W, Zhang D, Hou Y, Li YH, Sun QY, Sun XF, Wang WH. Reduced expression of MAD2, BCL2, and MAP kinase activity in pig oocytes after
in vitro aging are associated with defects in sister chromatid segregation during meiosis II and embryo fragmentation after activation. Biol Reprod. 2005. 72:373–383.
Article
17. Miki H, Inoue K, Ogonuki N, Mochida K, Nagashima H, Baba T, Ogura A. Cytoplasmic asters are required for progression past the first cell cycle in cloned mouse embryos. Biol Reprod. 2004. 71:2022–2028.
Article
18. Moudjou M, Bordes N, Paintrand M, Bornens M. γ-Tubulin in mammalian cells: The centrosomal and the cytosolic forms. J Cell Sci. 1996. 109:875–887.
19. Park JH, Choi YL, Kwon DJ, Hwang IS, Park CK, Yang BK, Cheong HT. Control of MPF activity of recipient oocytes and subsequent development and DNA methylation of somatic cell nuclear transfer bovine embryos. Reprod Dev Biol. 2009. 33:223–228.
20. Raff JW, Kellogg DR, Alberts BM. Drosophila γ-tubulin is part of a complex containing two previously identified centrosomal MAPs. J Cell Biol. 1993. 121:823–835.
Article
21. Rosenkrans CF Jr, First NL. Culture of bovine zygotes to the blastocyst stage: effects of amino acids and vitamins. Theriogenology. 1991. 35:266.
Article
22. Salisbury JL. Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol. 1995. 7:39–45.
Article
23. Shin MR, Park SW, Shim H, Kim NH. Nuclear and microtubule reorganization in nuclear-transferred bovine embryos. Mol Reprod Dev. 2002. 62:74–82.
Article
24. Stearns T, Evans L, Kirschner M. γ-Tubulin is a highly conserved component of the centrosome. Cell. 1991. 65:825–836.
Article
25. Tani T, Kato Y, Tsunoda Y. Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming. Biol Reprod. 2001. 64:324–330.
Article
26. Tani T, Kato Y, Tsunoda Y. Reprogramming of bovine somatic cell nuclei is not directly regulated by maturation promoting factor or mitogen-activated protein kinase activity. Biol Reprod. 2003. 69:1890–1894.
Article
27. Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature. 1998. 394:69–74.
Article
28. Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA, Wells DN, Young LE. Somatic cell nuclear transfer. Nature. 2002. 419:583–586.
Article
29. Yin XJ, Tani T, Yonemura I, Kawakami M, Miyamoto K, Hasegawa R, Kato Y, Tsunoda Y. Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol Reprod. 2002. 67:442–446.
Article
30. Zheng Y, Wong ML, Alberts B, Mitchison T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature. 1995. 378:578–583.
Article
31. Zhong Z, Spate L, Hao Y, Li R, Lai L, Katayama M, Sun QY, Prather RS, Schatten H. Remodeling of centrosomes in intraspecies and interspecies nuclear transfer porcine embryos. Cell Cycle. 2007. 6:1510–1521.
Article
32. Zhong ZS, Zhang G, Meng XQ, Zhang YL, Chen DY, Schatten H, Sun QY. Function of donor cell centrosome in intraspecies and interspecies nuclear transfer embryos. Exp Cell Res. 2005. 306:35–46.
Article