1.Yang K., Guglielmo BJ. Diagnosis and treatment of extended-spectrum and AmpC β-lactamase-producing organisms. Ann Pharmacother. 2007. 41:1427–35.
2.Papanicolaou GA., Medeiros AA., Jacoby GA. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1990. 34:2200–9.
3.Ardanuy C., Linares J., Dominguez MA., Hernandez-Alles S., Benedi VJ., Martinez-Martinez L. Outer membrane profiles of clonally related Klebsiella pneumoniae isolates from clinical samples and activities of cephalosporins and carbapenems. Antimicrob Agents Chemother. 1998. 42:1636–40.
4.Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol. 2005. 43:4163–7.
5.Black JA., Moland ES., Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J Clin Microbiol. 2005. 43:3110–3.
6.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Seventeenth informational supplement, M100-S17. Wayne, PA: Clinical and Laboratory Standards Institute;2007.
7.Coudron PE., Moland ES., Thomson KS. Occurrence and detection of AmpC β-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. J Clin Microbiol. 2000. 38:1791–6.
8.Yong D., Park R., Yum JH., Lee K., Choi EC., Chong Y. Further modification of the Hodge test to screen AmpC β-lactamase (CMY-1)-producing strains of Escherichia coli and Klebsiella pneumoniae. J Microbiol Methods. 2002. 51:407–10.
9.Netzel TC., Jindani I., Hanson N., Turner BM., Smith L., Rand KH. The AmpC inhibitor, Syn2190, can be used to reveal extended-spectrum β-lactamases in Escherichia coli. Diagn Microbiol Infect Dis. 2007. 58:345–8.
10.Beesley T., Gascoyne N., Knott-Hunziker V., Petursson S., Waley SG., Jaurin B, et al. The inhibition of class C β-lactamases by boronic acids. Biochem J. 1983. 209:229–33.
11.Yagi T., Wachino J., Kurokawa H., Suzuki S., Yamane K., Doi Y, et al. Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol. 2005. 43:2551–8.
12.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Approved Standard, M02-A9. Wayne, PA: Clinical and Laboratory Standards Institute;2006.
13.Perez-Perez FJ., Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002. 40:2153–62.
14.Tan TY., Ng LS., He J., Koh TH., Hsu LY. Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother. 2009. 53:146–9.
15.Song W., Jeong SH., Kim JS., Kim HS., Shin DH., Roh KH, et al. Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC β-lactamases and extended-spectrum β-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn Microbiol Infect Dis. 2007. 57:315–8.
16.Ayers LW., Jones RN., Barry AL., Thornsberry C., Fuchs PC., Gavan TL, et al. Cefotetan, a new cephamycin: comparison of in vitro antimicrobial activity with other cephems, β-lactamase stability, and preliminary recommendations for disk diffusion testing. Antimicrob Agents Chemother. 1982. 22:859–77.
17.Wachino J., Doi Y., Yamane K., Shibata N., Yagi T., Kubota T, et al. Molecular characterization of a cephamycin-hydrolyzing and inhibitor-resistant class A β-lactamase, GES-4, possessing a single G170S substitution in the omega-loop. Antimicrob Agents Chemother. 2004. 48:2905–10.
18.Poirel L., Naas T., Nicolas D., Collet L., Bellais S., Cavallo JD, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000. 44:891–7.
19.Martinez-Martinez L., Pascual A., Hernandez-Alles S., Alvarez-Diaz D., Suarez AI., Tran J, et al. Roles of β-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob Agents Chemother. 1999. 43:1669–73.
20.Martinez-Martinez L., Hernandez-Alles S., Alberti S., Tomas JM., Benedi VJ., Jacoby GA. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrob Agents Chemother. 1996. 40:342–8.
21.Hernandez-Alles S., Conejo M., Pascual A., Tomas JM., Benedi VJ., Martinez-Martinez L. Relationship between outer membrane alterations and susceptibility to antimicrobial agents in isogenic strains of Klebsiella pneumoniae. J Antimicrob Chemother. 2000. 46:273–7.
22.Hernandez-Alles S., Benedi VJ., Martinez-Martinez L., Pascual A., Aguilar A., Tomas JM, et al. Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob Agents Chemother. 1999. 43:937–9.
Article
23.Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev. 2009. 22:161–82.
24.Doi Y., Potoski BA., Adams-Haduch JM., Sidjabat HE., Pasculle AW., Paterson DL. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type β-lactamase by use of a boronic acid compound. J Clin Microbiol. 2008. 46:4083–6.