Korean J Sports Med.  2023 Dec;41(4):185-200. 10.5763/kjsm.2023.41.4.185.

Current Trends and Future Developments in Anterior Cruciate Ligament Reconstruction: Current Concepts Review

Affiliations
  • 1Knee Center, Department of Orthopaedic Surgery, KonKuk University M edical Center, Seoul, Korea
  • 2Sports Medical Center, KonKuk University Medical Center, Seoul, Korea

Abstract

As the number of anterior cruciate ligament (ACL) reconstructions has increased significantly, surgical techniques have also made a lot of progress, and clinical outcomes are improving accordingly. However, the authors still have different opinions on ACL anatomy, femoral tunnel position, how to make a femoral tunnel, and graft selection, and many parts are controversial. Major factors contributing to the failure of ACL reconstruction, such as technical errors and biological healing failures. To reduce technical errors, a comprehensive understanding of ACL anatomy and the ability to create a well-positioned femoral tunnel are crucial. This involves recognizing the advantages and disadvantages of three surgical techniques: modified transtibial, transanteromedial portal, and outside-in. To improve biological healing, the four principles of tissue engineering (cells, growth factors, scaffolds, and mechanical stimuli) have been increasingly explored in various methods of bioaugmentation. Residual rotational instability of the knee joint remains a significant concern. Since the rediscovery of the anterolateral ligament (ALL) in the knee joint, the role of anterolateral complex, including the ALL and the deep iliotibial band, as secondary stabilizers of anterolateral rotatory instability, has gained attention. In the quest to reinforce the anterolateral complex, there are two approaches: ALL reconstruction as anatomical reconstruction concept and lateral extraarticular tenodesis as a nonanatomical reinforcement concept.

Keyword

Anterior cruciate ligament; Anterolateral ligament; Anterior cruciate ligament anatomy; Anterior cruciate ligament reconstruction; Anatomical reconstruction

Figure

  • Fig. 1 Anterior cruciate ligament consists of anteromedial (AM) and posterolateral (PL) bundles. (A) Sagittal view. (B) Coronal view.

  • Fig. 2 Lateral wall of intercondylar notch showing lateral intercondylar ridge and lateral bifurcate ridge together with origins of anteromedial (AM) and posterolateral (PL) bundles.

  • Fig. 3 Anterior cruciate ligament femoral footprint is divided into direct (shaded area) and indirect (dotted area) fibers.

  • Fig. 4 (A) When the reamer passes over the bending point of the guide pin, the knee should be moved to extension. (B) After the reamer passes through the bending point of the guide pin, the knee is returned to a flexion position in order to avoid posterior wall blowout. Reprinted from Lee et al.32 (Arthrosc Tech 2017;6:e227-32) according to the Creative Commons License.

  • Fig. 5 Schematic illustration of transanteromedial portal method.

  • Fig. 6 (A) Flexible reamer (VersiTomic; Stryke). Reprinted with permission from Stryker. (B) Schematic illustration of transanteromedial portal method using flexible reamer system.

  • Fig. 7 A flexible guide pin is inserted through the curved drill guide. Reprinted from Stryker.

  • Fig. 8 The sagittal graft inclination (A) and the coronal graft inclination (B).

  • Fig. 9 Schematic illustration of outside-in method.

  • Fig. 10 The femoral tunnel position is presented using the quadrant method described by Bernard et al.47 (Am J Knee Surg 1997;10:14-22).

  • Fig. 11 Schematic illustration of autografts.

  • Fig. 12 The process of making a quadruple hamstring graft (semitendinosus tendon).

  • Fig. 13 Anatomical configuration of the anterolateral complex including anterolateral ligament (ALL) and superficial and deep layers of iliotibial band.

  • Fig. 14 Schematic illustration of the anterolateral ligament reconstruction. LCL, lateral collateral ligament.

  • Fig. 15 Lateral extraarticular tenodesis. (A) The iliotibial (IT) band is stripped and left attached distally to Gerdy’s tubercle. (B) Lemaire technique: the proximal strip of IT band is passed beneath the lateral collateral ligament (LCL). (C) Modified Andrews technique: the proximal strip of IT band is passed over the LCL.


Cited by  1 articles

Journey So Far to Make More Perfect Anterior Cruciate Ligament Surgery
Kyu Sung Chung
Korean J Sports Med. 2023;41(4):181-184.    doi: 10.5763/kjsm.2023.41.4.181.


Reference

1. Chung KS, Kim JH, Kong DH, Park I, Kim JG, Ha JK. 2022; An increasing trend in the number of anterior cruciate ligament reconstruction in Korea: a nationwide epidemiologic study. Clin Orthop Surg. 14:220–6. DOI: 10.4055/cios20276. PMID: 35685966. PMCID: PMC9152897.
Article
2. Risberg MA, Grindem H, Øiestad BE. 2016; We need to implement current evidence in early rehabilitation programs to improve long-term outcome after anterior cruciate ligament injury. J Orthop Sports Phys Ther. 46:710–3. DOI: 10.2519/jospt.2016.0608. PMID: 27581178.
Article
3. Golberg E, Sommerfeldt M, Pinkoski A, Dennett L, Beaupre L. Anterior cruciate ligament reconstruction return-to-sport decision-making: a scoping review. Sports Health. 2023; Jan. 27. [Epub]. https://doi.org/10.1177/19417381221147524. DOI: 10.1177/19417381221147524. PMID: 36707977.
Article
4. Niederer D, Behringer M, Stein T. 2023; Functional outcomes after anterior cruciate ligament reconstruction: unravelling the role of time between injury and surgery, time since reconstruction, age, gender, pain, graft type, and concomitant injuries. BMC Sports Sci Med Rehabil. 15:49. DOI: 10.1186/s13102-023-00663-x. PMID: 37005699. PMCID: PMC10068137.
Article
5. Cohen D, Yao PF, Uddandam A, de Sa D, Arakgi ME. 2022; Etiology of failed anterior cruciate ligament reconstruction: a scoping review. Curr Rev Musculoskelet Med. 15:394–401. DOI: 10.1007/s12178-022-09776-1. PMID: 35852699. PMCID: PMC9463419.
Article
6. Morales-Avalos R, Torres-González EM, Padilla-Medina JR, Monllau JC. ACL anatomy: is there still something to learn? Rev Esp Cir Ortop Traumatol. 2023; Feb. 12. [Epub]. https://doi.org/10.1016/j.recot.2023.02.005. DOI: 10.1016/j.recot.2023.02.005. PMID: 36787832.
Article
7. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. 1991; Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med. 19:217–25. DOI: 10.1177/036354659101900303. PMID: 1867330.
Article
8. Cone SG, Howe D, Fisher MB. 2019; Size and shape of the human anterior cruciate ligament and the impact of sex and skeletal growth: a systematic review. JBJS Rev. 7:e8. DOI: 10.2106/JBJS.RVW.18.00145. PMID: 31246862. PMCID: PMC7771555.
9. Musahl V, Nazzal EM, Lucidi GA, et al. 2022; Current trends in the anterior cruciate ligament part 1: biology and biomechanics. Knee Surg Sports Traumatol Arthrosc. 30:20–33. DOI: 10.1007/s00167-021-06826-y. PMID: 34927221.
Article
10. Kondo E, Merican AM, Yasuda K, Amis AA. 2014; Biomechanical analysis of knee laxity with isolated anteromedial or posterolateral bundle-deficient anterior cruciate ligament. Arthroscopy. 30:335–43. DOI: 10.1016/j.arthro.2013.12.003. PMID: 24581258.
Article
11. Amis AA. 2012; The functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc. 20:613–20. DOI: 10.1007/s00167-011-1864-7. PMID: 22278656.
Article
12. Sabzevari S, Shaikh H, Marshall B, et al. 2020; The femoral posterior fan-like extension of the ACL insertion increases the failure load. Knee Surg Sports Traumatol Arthrosc. 28:1113–8. DOI: 10.1007/s00167-019-05753-3. PMID: 31642946.
Article
13. Śmigielski R, Zdanowicz U, Drwięga M, Ciszek B, Williams A. 2016; The anatomy of the anterior cruciate ligament and its relevance to the technique of reconstruction. Bone Joint J. 98-B:1020–6. DOI: 10.1302/0301-620X.98B8.37117. PMID: 27482012.
Article
14. Morales-Avalos R, Perelli S, Vilchez-Cavazos F, et al. 2022; The morphology of the femoral footprint of the anterior cruciate ligament changes with aging from a large semicircular shape to a small flat ribbon-like shape. Knee Surg Sports Traumatol Arthrosc. 30:3402–13. DOI: 10.1007/s00167-022-06935-2. PMID: 35318508. PMCID: PMC9464138.
Article
15. Costa GG, Grassi A, Perelli S, et al. 2019; Age over 50 years is not a contraindication for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 27:3679–91. DOI: 10.1007/s00167-019-05450-1. PMID: 30944945.
Article
16. Hiramatsu K, Mae T, Tachibana Y, Nakagawa S, Shino K. 2018; Contact area between femoral tunnel and interference screw in anatomic rectangular tunnel ACL reconstruction: a comparison of outside-in and trans-portal inside-out techniques. Knee Surg Sports Traumatol Arthrosc. 26:519–25. DOI: 10.1007/s00167-017-4732-2. PMID: 29058021.
Article
17. Fink C, Lawton R, Förschner F, Gföller P, Herbort M, Hoser C. 2018; Minimally invasive quadriceps tendon single-bundle, arthroscopic, anatomic anterior cruciate ligament reconstruction with rectangular bone tunnels. Arthrosc Tech. 7:e1045–56. DOI: 10.1016/j.eats.2018.06.012. PMID: 30377585. PMCID: PMC6203691.
Article
18. Takata Y, Nakase J, Oshima T, Shimozaki K, Asai K, Tsuchiya H. 2018; No difference in the graft shift between a round and a rounded rectangular femoral tunnel for anterior cruciate ligament reconstruction: an experimental study. Arch Orthop Trauma Surg. 138:1249–55. DOI: 10.1007/s00402-018-2958-1. PMID: 29770879.
Article
19. Lim HC, Yoon YC, Wang JH, Bae JH. 2012; Anatomical versus non-anatomical single bundle anterior cruciate ligament reconstruction: a cadaveric study of comparison of knee stability. Clin Orthop Surg. 4:249–55. DOI: 10.4055/cios.2012.4.4.249. PMID: 23205233. PMCID: PMC3504688.
Article
20. Byrne KJ, Hughes JD, Gibbs C, et al. 2022; Non-anatomic tunnel position increases the risk of revision anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 30:1388–95. DOI: 10.1007/s00167-021-06607-7. PMID: 33983487.
Article
21. Wan F, Chen T, Ge Y, Zhang P, Chen S. 2019; Effect of nearly isometric ACL reconstruction on graft-tunnel motion: a quantitative clinical study. Orthop J Sports Med. 7:2325967119890382. DOI: 10.1177/2325967119890382. PMID: 32656282. PMCID: PMC7333503.
Article
22. Musahl V, Engler ID, Nazzal EM, et al. 2022; Current trends in the anterior cruciate ligament part II: evaluation, surgical technique, prevention, and rehabilitation. Knee Surg Sports Traumatol Arthrosc. 30:34–51. DOI: 10.1007/s00167-021-06825-z. PMID: 34865182.
Article
23. Tuca M, Valderrama I, Eriksson K, Tapasvi S. 2023; Current trends in anterior cruciate ligament surgery: a worldwide benchmark study. J ISAKOS. 8:2–10. DOI: 10.1016/j.jisako.2022.08.009. PMID: 36154898.
Article
24. Oh JY, Kim KT, Park YJ, et al. 2020; Biomechanical comparison of single-bundle versus double-bundle anterior cruciate ligament reconstruction: a meta-analysis. Knee Surg Relat Res. 32:14. DOI: 10.1186/s43019-020-00033-8. PMID: 32660562. PMCID: PMC7219200.
Article
25. Goldsmith MT, Jansson KS, Smith SD, Engebretsen L, LaPrade RF, Wijdicks CA. 2013; Biomechanical comparison of anatomic single- and double-bundle anterior cruciate ligament reconstructions: an in vitro study. Am J Sports Med. 41:1595–604. DOI: 10.1177/0363546513487065. PMID: 23696212.
Article
26. Kondo E, Merican AM, Yasuda K, Amis AA. 2011; Biomechanical comparison of anatomic double-bundle, anatomic single-bundle, and nonanatomic single-bundle anterior cruciate ligament reconstructions. Am J Sports Med. 39:279–88. DOI: 10.1177/0363546510392350. PMID: 21239692.
Article
27. Torkaman A, Yazdi H, Hosseini MG. 2016; The results of single bundle versus double bundle ACL reconstruction surgery, a retrospective study and review of literature. Med Arch. 70:351–3. DOI: 10.5455/medarh.2016.70.351-353. PMID: 27994295. PMCID: PMC5136424.
Article
28. Alomari MS, Ghaddaf AA, Abdulhamid AS, Alshehri MS, Ashraf M, Alharbi HH. 2022; Single bundle versus double bundle anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Indian J Orthop. 56:1669–84. DOI: 10.1007/s43465-022-00718-0. PMID: 36187591. PMCID: PMC9485407.
Article
29. Björnsson H, Desai N, Musahl V, et al. 2015; Is double-bundle anterior cruciate ligament reconstruction superior to single-bundle?: a comprehensive systematic review. Knee Surg Sports Traumatol Arthrosc. 23:696–739. DOI: 10.1007/s00167-013-2666-x.
Article
30. Sherman SL, Calcei J, Ray T, et al. 2021; ACL Study Group presents the global trends in ACL reconstruction: biennial survey of the ACL Study Group. J ISAKOS. 6:322–8. DOI: 10.1136/jisakos-2020-000567. PMID: 34272329.
Article
31. Lee YH, Kuroda R, Chan KM. 2015; Anterior cruciate ligament reconstruction: a 2015 global perspective of the Magellan Society. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2:122–8. DOI: 10.1016/j.asmart.2015.08.003. PMID: 29264251. PMCID: PMC5730661.
Article
32. Lee DW, Kim JG. 2017; Anatomic single-bundle anterior cruciate ligament reconstruction using the modified transtibial technique. Arthrosc Tech. 6:e227–32. DOI: 10.1016/j.eats.2016.09.028. PMID: 28409105. PMCID: PMC5382429.
Article
33. Lee DW, Kim JG, Lee JH, Park JH, Kim DH. 2018; Comparison of modified transtibial and outside-in techniques in anatomic single-bundle anterior cruciate ligament reconstruction. Arthroscopy. 34:2857–70. DOI: 10.1016/j.arthro.2018.05.041. PMID: 30197202.
Article
34. Lee JK, Lee S, Seong SC, Lee MC. 2014; Modified transtibial technique for anterior cruciate ligament reconstruction with quadriceps tendon autograft. JBJS Essent Surg Tech. 4:e15. DOI: 10.2106/JBJS.ST.N.00078. PMID: 30775122. PMCID: PMC6359920.
Article
35. Youm YS, Cho SD, Lee SH, Youn CH. 2014; Modified transtibial versus anteromedial portal technique in anatomic single-bundle anterior cruciate ligament reconstruction: comparison of femoral tunnel position and clinical results. Am J Sports Med. 42:2941–7. DOI: 10.1177/0363546514551922. PMID: 25269655.
Article
36. Silver AG, Kaar SG, Grisell MK, Reagan JM, Farrow LD. 2010; Comparison between rigid and flexible systems for drilling the femoral tunnel through an anteromedial portal in anterior cruciate ligament reconstruction. Arthroscopy. 26:790–5. DOI: 10.1016/j.arthro.2009.10.012. PMID: 20511037.
Article
37. Steiner ME, Smart LR. 2012; Flexible instruments outperform rigid instruments to place anatomic anterior cruciate ligament femoral tunnels without hyperflexion. Arthroscopy. 28:835–43. DOI: 10.1016/j.arthro.2011.11.029. PMID: 22289428.
Article
38. Lee DW, Lee DH, Moon SG, Kang JH, Woo YJ, Kim WJ. 2023; Femoral tunnel geometry and graft inclination angles in anterior cruciate ligament reconstruction using a flexible reamer system. Medicina (Kaunas). 59:1031. DOI: 10.3390/medicina59061031. PMID: 37374234. PMCID: PMC10302174.
Article
39. Yoon KH, Kim JH, Kwon YB, Kim EJ, Lee SH, Kim SG. 2020; A two-portal technique using a flexible reamer system is a safe and effective method for transportal anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg. 140:383–90. DOI: 10.1007/s00402-020-03343-4. PMID: 31970504.
Article
40. Ahn JH, Jeong HJ, Lee YS, Park JH, Lee JH, Ko TS. 2016; Graft bending angle is correlated with femoral intraosseous graft signal intensity in anterior cruciate ligament reconstruction using the outside-in technique. Knee. 23:666–73. DOI: 10.1016/j.knee.2015.10.006. PMID: 26968485.
Article
41. Kim JG, Wang JH, Lim HC, Ahn JH. 2012; Femoral graft bending angle and femoral tunnel geometry of transportal and outside-in techniques in anterior cruciate ligament reconstruction: an in vivo 3-dimensional computed tomography analysis. Arthroscopy. 28:1682–94. DOI: 10.1016/j.arthro.2012.05.884. PMID: 23107250.
Article
42. Niki Y, Nagai K, Harato K, Suda Y, Nakamura M, Matsumoto M. 2017; Effects of femoral bone tunnel characteristics on graft-bending angle in double-bundle anterior cruciate ligament reconstruction: a comparison of the outside-in and transportal techniques. Knee Surg Sports Traumatol Arthrosc. 25:1191–8. DOI: 10.1007/s00167-015-3761-y. PMID: 26294057.
Article
43. van Eck CF, Gravare-Silbernagel K, Samuelsson K, et al. 2013; Evidence to support the interpretation and use of the Anatomic Anterior Cruciate Ligament Reconstruction Checklist. J Bone Joint Surg Am. 95:e153. DOI: 10.2106/JBJS.L.01437. PMID: 24132368.
Article
44. Inderhaug E, Larsen A, Strand T, Waaler PA, Solheim E. 2016; The effect of feedback from post-operative 3D CT on placement of femoral tunnels in single-bundle anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 24:154–60. DOI: 10.1007/s00167-014-3355-0. PMID: 25274095.
Article
45. Sirleo L, Innocenti M, Innocenti M, Civinini R, Carulli C, Matassi F. 2018; Post-operative 3D CT feedback improves accuracy and precision in the learning curve of anatomic ACL femoral tunnel placement. Knee Surg Sports Traumatol Arthrosc. 26:468–77. DOI: 10.1007/s00167-017-4614-7. PMID: 28631143.
Article
46. Mhaskar VA, Jain Y, Soni P, Fiske R, Maheshwari J. 2021; How important is the tunnel position in outcomes post-ACL reconstruction: a 3D CT-based study. Indian J Orthop. 56:312–8. DOI: 10.1007/s43465-021-00485-4. PMID: 35140863. PMCID: PMC8789976.
Article
47. Bernard M, Hertel P, Hornung H, Cierpinski T. 1997; Femoral insertion of the ACL: radiographic quadrant method. Am J Knee Surg. 10:14–22.
48. Domnick C, Raschke MJ, Herbort M. 2016; Biomechanics of the anterior cruciate ligament: physiology, rupture and reconstruction techniques. World J Orthop. 7:82–93. DOI: 10.5312/wjo.v7.i2.82. PMID: 26925379. PMCID: PMC4757662.
Article
49. Runer A, Keeling L, Wagala N, et al. 2023; Current trends in graft choice for anterior cruciate ligament reconstruction - part I: anatomy, biomechanics, graft incorporation and fixation. J Exp Orthop. 10:37. DOI: 10.1186/s40634-023-00600-4. PMID: 37005974. PMCID: PMC10067784.
Article
50. Chu CR, Williams AA. 2019; Quantitative MRI UTE-T2* and T2* show progressive and continued graft maturation over 2 years in human patients after anterior cruciate ligament reconstruction. Orthop J Sports Med. 7:2325967119863056. DOI: 10.1177/2325967119863056. PMID: 31448301. PMCID: PMC6693027.
Article
51. Irvine JN, Arner JW, Thorhauer E, et al. 2016; Is there a difference in graft motion for bone-tendon-bone and hamstring autograft ACL reconstruction at 6 weeks and 1 year? Am J Sports Med. 44:2599–607. DOI: 10.1177/0363546516651436. PMID: 27411358.
Article
52. Ma R, Schär M, Chen T, et al. 2018; Effect of dynamic changes in anterior cruciate ligament in situ graft force on the biological healing response of the graft-tunnel interface. Am J Sports Med. 46:915–23. DOI: 10.1177/0363546517745624.
Article
53. Biset A, Douiri A, Robinson JR, et al. 2023; Tibial tunnel expansion does not correlate with four-strand graft maturation after ACL reconstruction using adjustable cortical suspensory fixation. Knee Surg Sports Traumatol Arthrosc. 31:1761–70. DOI: 10.1007/s00167-022-07051-x. PMID: 35876906.
Article
54. Chee MY, Chen Y, Pearce CJ, et al. 2017; Outcome of patellar tendon versus 4-strand hamstring tendon autografts for anterior cruciate ligament reconstruction: a systematic review and meta-analysis of prospective randomized trials. Arthroscopy. 33:450–63. DOI: 10.1016/j.arthro.2016.09.020. PMID: 28040335.
Article
55. Lee DW, Shim JC, Yang SJ, Cho SI, Kim JG. 2019; Functional effects of single semitendinosus tendon harvesting in anatomic anterior cruciate ligament reconstruction: comparison of single versus dual hamstring harvesting. Clin Orthop Surg. 11:60–72. DOI: 10.4055/cios.2019.11.1.60. PMID: 30838109. PMCID: PMC6389538.
Article
56. Wang HD, Gao SJ, Zhang YZ. 2020; Hamstring autograft versus hybrid graft for anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med. 48:1014–22. DOI: 10.1177/0363546519849483. PMID: 31166113.
Article
57. Marques FD, Barbosa PH, Alves PR, et al. 2020; Anterior knee pain after anterior cruciate ligament reconstruction. Orthop J Sports Med. 8:2325967120961082. DOI: 10.1177/2325967120961082. PMID: 33195725. PMCID: PMC7605008.
Article
58. Johnston PT, McClelland JA, Feller JA, Webster KE. 2021; Knee muscle strength after quadriceps tendon autograft anterior cruciate ligament reconstruction: systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 29:2918–33. DOI: 10.1007/s00167-020-06311-y. PMID: 33026536.
Article
59. Cruz AI Jr, Beck JJ, Ellington MD, et al. 2020; Failure rates of autograft and allograft ACL reconstruction in patients 19 years of age and younger: a systematic review and meta-analysis. JB JS Open Access. 5:e20.00106. DOI: 10.2106/JBJS.OA.20.00106. PMID: 34322650. PMCID: PMC8312832.
60. Yao LW, Wang Q, Zhang L, et al. 2015; Patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Eur J Orthop Surg Traumatol. 25:355–65. DOI: 10.1007/s00590-014-1481-5. PMID: 24831306.
Article
61. Cvetanovich GL, Mascarenhas R, Saccomanno MF, et al. 2014; Hamstring autograft versus soft-tissue allograft in anterior cruciate ligament reconstruction: a systematic review and meta-analysis of randomized controlled trials. Arthroscopy. 30:1616–24. DOI: 10.1016/j.arthro.2014.05.040. PMID: 25108904.
Article
62. Yao S, Fu BS, Yung PS. 2021; Graft healing after anterior cruciate ligament reconstruction (ACLR). Asia Pac J Sports Med Arthrosc Rehabil Technol. 25:8–15. DOI: 10.1016/j.asmart.2021.03.003. PMID: 34094881. PMCID: PMC8134949.
Article
63. Ristaniemi A, Stenroth L, Mikkonen S, Korhonen RK. 2018; Comparison of elastic, viscoelastic and failure tensile material properties of knee ligaments and patellar tendon. J Biomech. 79:31–8. DOI: 10.1016/j.jbiomech.2018.07.031. PMID: 30082085.
Article
64. Looney AM, Leider JD, Horn AR, Bodendorfer BM. 2020; Bioaugmentation in the surgical treatment of anterior cruciate ligament injuries: a review of current concepts and emerging tech-niques. SAGE Open Med. 8:2050312120921057. DOI: 10.1177/2050312120921057. PMID: 32435488. PMCID: PMC7222656.
Article
65. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. 1993; Tendon-healing in a bone tunnel: a biomechanical and histological study in the dog. J Bone Joint Surg Am. 75:1795–803. DOI: 10.2106/00004623-199312000-00009. PMID: 8258550.
Article
66. Wang C, Hu Y, Zhang S, et al. 2021; Application of stem cell therapy for ACL graft regeneration. Stem Cells Int. 2021:6641818. DOI: 10.1155/2021/6641818. PMID: 34381504. PMCID: PMC8352687.
Article
67. Chen B, Li B, Qi YJ, et al. 2016; Enhancement of tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells genetically modified with bFGF/BMP2. Sci Rep. 6:25940. DOI: 10.1038/srep25940. PMID: 27173013. PMCID: PMC4865959.
Article
68. Dong Y, Zhang Q, Li Y, Jiang J, Chen S. 2012; Enhancement of tendon-bone healing for anterior cruciate ligament (ACL) reconstruction using bone marrow-derived mesenchymal stem cells infected with BMP-2. Int J Mol Sci. 13:13605–20. DOI: 10.3390/ijms131013605. PMID: 23202970. PMCID: PMC3497344.
Article
69. Bessa PC, Casal M, Reis RL. 2008; Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med. 2:81–96. DOI: 10.1002/term.74. PMID: 18383454.
Article
70. Andriolo L, Di Matteo B, Kon E, Filardo G, Venieri G, Marcacci M. 2015; PRP augmentation for ACL reconstruction. Biomed Res Int. 2015:371746. DOI: 10.1155/2015/371746. PMID: 26064903. PMCID: PMC4430629.
Article
71. Murray MM, Fleming BC. 2013; Use of a bioactive scaffold to stimulate anterior cruciate ligament healing also minimizes post-traumatic osteoarthritis after surgery. Am J Sports Med. 41:1762–70. DOI: 10.1177/0363546513483446. PMID: 23857883. PMCID: PMC3735821.
Article
72. Mutsuzaki H, Nakajima H, Nomura S, Sakane M. 2017; Differences in placement of calcium phosphate-hybridized tendon grafts within the femoral bone tunnel during ACL reconstruction do not influence tendon-to-bone healing. J Orthop Surg Res. 12:80. DOI: 10.1186/s13018-017-0583-2. PMID: 28577573. PMCID: PMC5455123.
Article
73. Leong NL, Petrigliano FA, McAllister DR. 2014; Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res A. 102:1614–24. DOI: 10.1002/jbm.a.34820. PMID: 23737190.
Article
74. Moreau JE, Bramono DS, Horan RL, Kaplan DL, Altman GH. 2008; Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments. Tissue Eng Part A. 14:1161–72. DOI: 10.1089/ten.tea.2007.0147. PMID: 18380592.
Article
75. Vincent JP, Magnussen RA, Gezmez F, et al. 2012; The anterolateral ligament of the human knee: an anatomic and histologic study. Knee Surg Sports Traumatol Arthrosc. 20:147–52. DOI: 10.1007/s00167-011-1580-3. PMID: 21717216.
Article
76. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J. 2013; Anatomy of the anterolateral ligament of the knee. J Anat. 223:321–8. DOI: 10.1111/joa.12087. PMID: 23906341. PMCID: PMC3791125.
Article
77. Pomajzl R, Maerz T, Shams C, Guettler J, Bicos J. 2015; A review of the anterolateral ligament of the knee: current knowledge regarding its incidence, anatomy, biomechanics, and surgical dissection. Arthroscopy. 31:583–91. DOI: 10.1016/j.arthro.2014.09.010. PMID: 25447415.
Article
78. Roessler PP, Schüttler KF, Heyse TJ, Wirtz DC, Efe T. 2016; The anterolateral ligament (ALL) and its role in rotational extra-articular stability of the knee joint: a review of anatomy and surgical concepts. Arch Orthop Trauma Surg. 136:305–13. DOI: 10.1007/s00402-015-2395-3. PMID: 26714471.
Article
79. DePhillipo NN, Cinque ME, Chahla J, Geeslin AG, LaPrade RF. 2017; Anterolateral ligament reconstruction techniques, biomechanics, and clinical outcomes: a systematic review. Arthroscopy. 33:1575–83. DOI: 10.1016/j.arthro.2017.03.009. PMID: 28502387.
Article
80. Van der Watt L, Khan M, Rothrauff BB, et al. 2015; The structure and function of the anterolateral ligament of the knee: a systematic review. Arthroscopy. 31:569–82. DOI: 10.1016/j.arthro.2014.12.015. PMID: 25744324.
Article
81. Kraeutler MJ, Welton KL, Chahla J, LaPrade RF, McCarty EC. 2018; Current concepts of the anterolateral ligament of the knee: anatomy, biomechanics, and reconstruction. Am J Sports Med. 46:1235–42. DOI: 10.1177/0363546517701920. PMID: 28426251.
Article
82. Getgood A, Brown C, Lording T, et al. 2019; The anterolateral complex of the knee: results from the International ALC Consensus Group Meeting. Knee Surg Sports Traumatol Arthrosc. 27:166–76. DOI: 10.1007/s00167-018-5072-6. PMID: 30046994.
Article
83. Sonnery-Cottet B, Daggett M, Fayard JM, et al. 2017; Anterolateral Ligament Expert Group consensus paper on the management of internal rotation and instability of the anterior cruciate ligament - deficient knee. J Orthop Traumatol. 18:91–106. DOI: 10.1007/s10195-017-0449-8. PMID: 28220268. PMCID: PMC5429259.
Article
84. Devitt BM, Neri T, Fritsch BA. 2023; Combined anterolateral complex and anterior cruciate ligament injury: anatomy, biomechanics, and management-State-of-the-art. J ISAKOS. 8:37–46. DOI: 10.1016/j.jisako.2022.10.004. PMID: 36368633.
Article
85. Nazzal EM, Keeling LE, Ryan PM, Herman ZJ, Hughes JD. 2023; The role of lateral extra-articular tenodesis in anterior cruciate ligament reconstruction and treatment of rotatory knee instability: a scoping review. Curr Rev Musculoskelet Med. 16:235–45. DOI: 10.1007/s12178-023-09832-4. PMID: 36995532. PMCID: PMC10234940.
Article
86. Inderhaug E, Stephen JM, Williams A, Amis AA. 2017; Biomechanical comparison of anterolateral procedures combined with anterior cruciate ligament reconstruction. Am J Sports Med. 45:347–54. DOI: 10.1177/0363546516681555. PMID: 28027653.
Article
87. Littlefield CP, Belk JW, Houck DA, et al. 2021; The anterolateral ligament of the knee: an updated systematic review of anatomy, biomechanics, and clinical outcomes. Arthroscopy. 37:1654–66. DOI: 10.1016/j.arthro.2020.12.190. PMID: 33340678.
Article
88. Daggett M, Ockuly AC, Cullen M, et al. 2016; Femoral origin of the anterolateral ligament: an anatomic analysis. Arthroscopy. 32:835–41. DOI: 10.1016/j.arthro.2015.10.006. PMID: 26725451.
89. Helito CP, Camargo DB, Sobrado MF, et al. 2018; Combined reconstruction of the anterolateral ligament in chronic ACL injuries leads to better clinical outcomes than isolated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 26:3652–9. DOI: 10.1007/s00167-018-4934-2. PMID: 29610972.
Article
90. Helito CP, Sobrado MF, Giglio PN, et al. 2019; Combined reconstruction of the anterolateral ligament in patients with anterior cruciate ligament injury and ligamentous hyperlaxity leads to better clinical stability and a lower failure rate than isolated anterior cruciate ligament reconstruction. Arthroscopy. 35:2648–54. DOI: 10.1016/j.arthro.2019.03.059. PMID: 31421960.
91. Abouljoud MM, Everhart JS, Sigman BO, Flanigan DC, Magnussen RA. 2018; Risk of retear following anterior cruciate ligament reconstruction using a hybrid graft of autograft augmented with allograft tissue: a systematic review and meta-analysis. Arthroscopy. 34:2927–35. DOI: 10.1016/j.arthro.2018.06.044. PMID: 30195958.
Article
92. Sonnery-Cottet B, Saithna A, Cavalier M, et al. 2017; Anterolateral ligament reconstruction is associated with significantly reduced ACL graft rupture rates at a minimum follow-up of 2 years: a prospective comparative study of 502 patients from the SANTI Study Group. Am J Sports Med. 45:1547–57. DOI: 10.1177/0363546516686057. PMID: 28151693.
Article
93. Lee DW, Kim JG, Cho SI, Kim DH. 2019; Clinical outcomes of isolated revision anterior cruciate ligament reconstruction or in combination with anatomic anterolateral ligament reconstruction. Am J Sports Med. 47:324–33. DOI: 10.1177/0363546518815888. PMID: 30640514.
Article
94. Kittl C, Halewood C, Stephen JM, et al. 2015; Length change patterns in the lateral extra-articular structures of the knee and related reconstructions. Am J Sports Med. 43:354–62. DOI: 10.1177/0363546514560993. PMID: 25540293.
Article
95. Devitt BM, Bell SW, Ardern CL, et al. 2017; The role of lateral extra-articular tenodesis in primary anterior cruciate ligament reconstruction: a systematic review with meta-analysis and best-evidence synthesis. Orthop J Sports Med. 5:2325967117731767. DOI: 10.1177/2325967117731767. PMID: 29124075. PMCID: PMC5661757.
Article
96. Hewison CE, Tran MN, Kaniki N, Remtulla A, Bryant D, Getgood AM. 2015; Lateral extra-articular tenodesis reduces rotational laxity when combined with anterior cruciate ligament reconstruction: a systematic review of the literature. Arthroscopy. 31:2022–34. DOI: 10.1016/j.arthro.2015.04.089. PMID: 26116497.
Article
97. Song GY, Hong L, Zhang H, Zhang J, Li Y, Feng H. 2016; Clinical outcomes of combined lateral extra-articular tenodesis and intra-articular anterior cruciate ligament reconstruction in add-ressing high-grade pivot-shift phenomenon. Arthroscopy. 32:898–905. DOI: 10.1016/j.arthro.2015.08.038. PMID: 26524939.
Article
98. Xu J, Han K, Lee TQ, et al. 2022; Anterolateral structure reconstruction similarly improves the stability and causes less over-constraint in anterior cruciate ligament-reconstructed knees compared with modified Lemaire lateral extra-articular tenodesis: a biomechanical study. Arthroscopy. 38:911–24. DOI: 10.1016/j.arthro.2021.06.023. PMID: 34358641.
Article
Full Text Links
  • KJSM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr