J Korean Med Sci.  2023 Oct;38(39):e334. 10.3346/jkms.2023.38.e334.

A Correlative Relationship Between Heart Failure and Cognitive Impairment: A Narrative Review

Affiliations
  • 1Department of Medicine, Korea University Graduate School, Seoul, Korea
  • 2Division of Cardiology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hwaseong, Korea
  • 3Division of Cardiology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea

Abstract

Heart failure (HF) is a chronic condition affecting millions of people worldwide. While the cardinal manifestations of HF are related to the cardiovascular system, it has become progressively evident that mild cognitive impairment (MCI) is also a significant complication of the disease. In fact, a significant number of patients with HF may experience MCI, which can manifest as deficits in attention, memory, executive function, and processing speed. The mechanisms responsible for cognitive dysfunction in HF are intricate and multifactorial.Possible factors contributing to this condition include decreased cerebral blood flow, thrombogenicity associated with HF, systemic inflammatory conditions, and proteotoxicity.MCI in HF has significant clinical implications, as it is linked to poorer quality of life, increased morbidity and mortality, and higher healthcare costs. Additionally, MCI can disrupt self-care behaviors, adherence to medication, and decision-making abilities, all of which are crucial for effectively managing HF. However, there is currently no gold standard diagnostic tool and follow-up strategy for MCI in HF patients. There is limited knowledge on the prevention and treatment of MCI. In conclusion, MCI is a common and clinically important complication of HF. Considering the substantial influence of MCI on patient outcomes, it is imperative for healthcare providers to be cognizant of this issue and integrate cognitive screening and management strategies into the care of HF patients.

Keyword

Heart Failure; Cognitive Dysfunction; Mild Cognitive Impairment

Figure

  • Fig. 1 The bi-directional relationship between mild cognitive impairment and heart failure.CO = cardiac output, CBF = cerebral blood flow, ANS = autonomic nerve system, BBB = blood-brain barrier, HF = heart failure.


Reference

1. Yingchoncharoen T, Wu TC, Choi DJ, Ong TK, Liew HB, Cho MC. Economic burden of heart failure in Asian countries with different healthcare systems. Korean Circ J. 2021; 51(8):681–693. PMID: 34227265.
2. Park JJ, Lee CJ, Park SJ, Choi JO, Choi S, Park SM, et al. Heart failure statistics in Korea, 2020: a report from the Korean Society of Heart Failure. Int J Heart Fail. 2021; 3(4):224–236. PMID: 36262554.
3. Choi HM, Park MS, Youn JC. Update on heart failure management and future directions. Korean J Intern Med. 2019; 34(1):11–43. PMID: 30612416.
4. Shim CY. Heart failure with preserved ejection fraction: the major unmet need in cardiology. Korean Circ J. 2020; 50(12):1051–1061. PMID: 33150751.
5. Choi EY, Kim YS, Lee HY, Shin HR, Park S, Cho SE. The moderating effect of subjective age on the association between depressive symptoms and cognitive functioning in Korean older adults. Aging Ment Health. 2019; 23(1):38–45. PMID: 29052424.
6. Mene-Afejuku TO, Pernia M, Ibebuogu UN, Chaudhari S, Mushiyev S, Visco F, et al. Heart failure and cognitive impairment: clinical relevance and therapeutic considerations. Curr Cardiol Rev. 2019; 15(4):291–303. PMID: 31456512.
7. Zuccalà G, Pedone C, Cesari M, Onder G, Pahor M, Marzetti E, et al. The effects of cognitive impairment on mortality among hospitalized patients with heart failure. Am J Med. 2003; 115(2):97–103. PMID: 12893394.
8. Gutiérrez Rodríguez J, Guzmán Gutiérrez G. Definition and prevalence of mild cognitive impairment. Rev Esp Geriatr Gerontol. 2017; 52(Suppl 1):3–6. PMID: 29628031.
9. Villringer A, Laufs U. Heart failure, cognition, and brain damage. Eur Heart J. 2021; 42(16):1579–1581. PMID: 33594425.
10. Liori S, Arfaras-Melainis A, Bistola V, Polyzogopoulou E, Parissis J. Cognitive impairment in heart failure: clinical implications, tools of assessment, and therapeutic considerations. Heart Fail Rev. 2022; 27(4):993–999. PMID: 33939080.
11. Petersen RC, Lopez O, Armstrong MJ, Getchius TS, Ganguli M, Gloss D, et al. Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology. 2018; 90(3):126–135. PMID: 29282327.
12. Suzuki T, Shimada H, Makizako H, Doi T, Yoshida D, Ito K, et al. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS One. 2013; 8(4):e61483. PMID: 23585901.
13. Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA. 2014; 312(23):2551–2561. PMID: 25514304.
14. Li JQ, Tan L, Wang HF, Tan MS, Tan L, Xu W, et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. J Neurol Neurosurg Psychiatry. 2016; 87(5):476–484. PMID: 26001840.
15. Kim KW, Park JH, Kim MH, Kim MD, Kim BJ, Kim SK, et al. A nationwide survey on the prevalence of dementia and mild cognitive impairment in South Korea. J Alzheimers Dis. 2011; 23(2):281–291. PMID: 21178286.
16. Suh SW, Kim YJ, Kwak KP, Kim K, Kim MD, Kim BS, et al. A 9-year comparison of dementia prevalence in Korea: results of NaSDEK 2008 and 2017. J Alzheimers Dis. 2021; 81(2):821–831. PMID: 33843678.
17. Zuccalà G, Marzetti E, Cesari M, Lo Monaco MR, Antonica L, Cocchi A, et al. Correlates of cognitive impairment among patients with heart failure: results of a multicenter survey. Am J Med. 2005; 118(5):496–502. PMID: 15866252.
18. Dong Y, Teo SY, Kang K, Tan M, Ling LH, Yeo PS, et al. Cognitive impairment in Asian patients with heart failure: prevalence, biomarkers, clinical correlates, and outcomes. Eur J Heart Fail. 2019; 21(5):688–690. PMID: 30938010.
19. Warraich HJ, Kitzman DW, Whellan DJ, Duncan PW, Mentz RJ, Pastva AM, et al. Physical function, frailty, cognition, depression, and quality of life in hospitalized adults ≥60 years with acute decompensated heart failure with preserved versus reduced ejection fraction. Circ Heart Fail. 2018; 11(11):e005254. PMID: 30571197.
20. Vellone E, Chialà O, Boyne J, Klompstra L, Evangelista LS, Back M, et al. Cognitive impairment in patients with heart failure: an international study. ESC Heart Fail. 2020; 7(1):46–53. PMID: 31854133.
21. García Bruñén JM, Povar Echeverria M, Díez-Manglano J, Manzano L, Trullàs JC, Romero Requena JM, et al. Cognitive impairment in patients hospitalized for congestive heart failure: data from the RICA Registry. Intern Emerg Med. 2021; 16(1):141–148. PMID: 32557090.
22. Haeusler KG, Laufs U, Endres M. Chronic heart failure and ischemic stroke. Stroke. 2011; 42(10):2977–2982. PMID: 21903953.
23. Abdul-Rahim AH, Perez AC, Fulton RL, Jhund PS, Latini R, Tognoni G, et al. Risk of stroke in chronic heart failure patients without atrial fibrillation: analysis of the Controlled Rosuvastatin in Multinational Trial Heart Failure (CORONA) and the Gruppo Italiano per lo Studio della Sopravvivenza nell’Insufficienza Cardiaca-Heart Failure (GISSI-HF) Trials. Circulation. 2015; 131(17):1486–1494. PMID: 25810334.
24. Kim W, Kim EJ. Heart failure as a risk factor for stroke. J Stroke. 2018; 20(1):33–45. PMID: 29402070.
25. Phillips AA, Chan FH, Zheng MM, Krassioukov AV, Ainslie PN. Neurovascular coupling in humans: physiology, methodological advances and clinical implications. J Cereb Blood Flow Metab. 2016; 36(4):647–664. PMID: 26661243.
26. Gruhn N, Larsen FS, Boesgaard S, Knudsen GM, Mortensen SA, Thomsen G, et al. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke. 2001; 32(11):2530–2533. PMID: 11692012.
27. Choi BR, Kim JS, Yang YJ, Park KM, Lee CW, Kim YH, et al. Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 2006; 97(9):1365–1369. PMID: 16635612.
28. Alosco ML, Spitznagel MB, Cohen R, Raz N, Sweet LH, Josephson R, et al. Reduced cerebral perfusion predicts greater depressive symptoms and cognitive dysfunction at a 1-year follow-up in patients with heart failure. Int J Geriatr Psychiatry. 2014; 29(4):428–436. PMID: 24022882.
29. Babayiğit E, Murat S, Mert KU, Çavuşoğlu Y. Assesment of cerebral blood flow velocities with transcranial doppler ultrasonography in heart failure patients with reduced ejection fraction. J Stroke Cerebrovasc Dis. 2021; 30(5):105706. PMID: 33690030.
30. Kure CE, Rosenfeldt FL, Scholey AB, Pipingas A, Kaye DM, Bergin PJ, et al. Relationships among cognitive function and cerebral blood flow, oxidative stress, and inflammation in older heart failure patients. J Card Fail. 2016; 22(7):548–559. PMID: 27002943.
31. Alosco ML, Brickman AM, Spitznagel MB, Garcia SL, Narkhede A, Griffith EY, et al. Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest Heart Fail. 2013; 19(4):E29–E34. PMID: 23517434.
32. Jefferson AL, Beiser AS, Himali JJ, Seshadri S, O’Donnell CJ, Manning WJ, et al. Low cardiac index is associated with incident dementia and Alzheimer disease: the Framingham Heart Study. Circulation. 2015; 131(15):1333–1339. PMID: 25700178.
33. Rajagopalan B, Raine AE, Cooper R, Ledingham JG. Changes in cerebral blood flow in patients with severe congestive cardiac failure before and after captopril treatment. Am J Med. 1984; 76(5B):86–90. PMID: 6328990.
34. Cornwell WK 3rd, Tarumi T, Aengevaeren VL, Ayers C, Divanji P, Fu Q, et al. Effect of pulsatile and nonpulsatile flow on cerebral perfusion in patients with left ventricular assist devices. J Heart Lung Transplant. 2014; 33(12):1295–1303. PMID: 25307621.
35. Stöhr EJ, McDonnell BJ, Colombo PC, Willey JZ. CrossTalk proposal: blood flow pulsatility in left ventricular assist device patients is essential to maintain normal brain physiology. J Physiol. 2019; 597(2):353–356. PMID: 30560570.
36. Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol. 2017; 312(1):H1–20. PMID: 27793855.
37. Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, et al. Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol. 2012; 590(14):3261–3275. PMID: 22495584.
38. Zuccalà G, Cattel C, Manes-Gravina E, Di Niro MG, Cocchi A, Bernabei R. Left ventricular dysfunction: a clue to cognitive impairment in older patients with heart failure. J Neurol Neurosurg Psychiatry. 1997; 63(4):509–512. PMID: 9343133.
39. Ogunshola OO, Al-Ahmad A. HIF-1 at the blood-brain barrier: a mediator of permeability? High Alt Med Biol. 2012; 13(3):153–161. PMID: 22994514.
40. Sfera A, Osorio C. Water for thought: is there a role for aquaporin channels in delirium? Front Psychiatry. 2014; 5:57. PMID: 24904440.
41. Yamazaki Y, Kanekiyo T. Blood-brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci. 2017; 18(9):1965. PMID: 28902142.
42. Pullicino PM, McClure LA, Wadley VG, Ahmed A, Howard VJ, Howard G, et al. Blood pressure and stroke in heart failure in the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. Stroke. 2009; 40(12):3706–3710. PMID: 19834015.
43. Witt BJ, Brown RD Jr, Jacobsen SJ, Weston SA, Ballman KV, Meverden RA, et al. Ischemic stroke after heart failure: a community-based study. Am Heart J. 2006; 152(1):102–109. PMID: 16824838.
44. Kim JY, Kang K, Kang J, Koo J, Kim DH, Kim BJ, et al. Executive summary of stroke statistics in Korea 2018: a report from the Epidemiology Research Council of the Korean Stroke Society. J Stroke. 2019; 21(1):42–59. PMID: 30558400.
45. Vemmos K, Ntaios G, Savvari P, Vemmou AM, Koroboki E, Manios E, et al. Stroke aetiology and predictors of outcome in patients with heart failure and acute stroke: a 10-year follow-up study. Eur J Heart Fail. 2012; 14(2):211–218. PMID: 22200911.
46. Shirazi LF, Bissett J, Romeo F, Mehta JL. Role of inflammation in heart failure. Curr Atheroscler Rep. 2017; 19(6):27. PMID: 28432635.
47. McAfoose J, Baune BT. Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev. 2009; 33(3):355–366. PMID: 18996146.
48. Yirmiya R, Winocur G, Goshen I. Brain interleukin-1 is involved in spatial memory and passive avoidance conditioning. Neurobiol Learn Mem. 2002; 78(2):379–389. PMID: 12431424.
49. Athilingam P, Moynihan J, Chen L, D’Aoust R, Groer M, Kip K. Elevated levels of interleukin 6 and C-reactive protein associated with cognitive impairment in heart failure. Congest Heart Fail. 2013; 19(2):92–98. PMID: 23057677.
50. Almeida OP, Garrido GJ, Beer C, Lautenschlager NT, Arnolda L, Flicker L. Cognitive and brain changes associated with ischaemic heart disease and heart failure. Eur Heart J. 2012; 33(14):1769–1776. PMID: 22296945.
51. Cannon JA, McMurray JJ, Quinn TJ. ‘Hearts and minds’: association, causation and implication of cognitive impairment in heart failure. Alzheimers Res Ther. 2015; 7(1):22. PMID: 25722749.
52. Willis MS, Patterson C. Proteotoxicity and cardiac dysfunction--Alzheimer’s disease of the heart? N Engl J Med. 2013; 368(5):455–464. PMID: 23363499.
53. Havakuk O, King KS, Grazette L, Yoon AJ, Fong M, Bregman N, et al. Heart failure-induced brain injury. J Am Coll Cardiol. 2017; 69(12):1609–1616. PMID: 28335844.
54. Bansilal S, Castellano JM, Garrido E, Wei HG, Freeman A, Spettell C, et al. Assessing the impact of medication adherence on long-term cardiovascular outcomes. J Am Coll Cardiol. 2016; 68(8):789–801. PMID: 27539170.
55. Rutledge T, Reis VA, Linke SE, Greenberg BH, Mills PJ. Depression in heart failure a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. J Am Coll Cardiol. 2006; 48(8):1527–1537. PMID: 17045884.
56. Sokoreli I, de Vries JJ, Pauws SC, Steyerberg EW. Depression and anxiety as predictors of mortality among heart failure patients: systematic review and meta-analysis. Heart Fail Rev. 2016; 21(1):49–63. PMID: 26572543.
57. Kasahara Y, Yoshida C, Saito M, Kimura Y. Assessments of heart rate and sympathetic and parasympathetic nervous activities of normal mouse fetuses at different stages of fetal development using fetal electrocardiography. Front Physiol. 2021; 12:652828. PMID: 33897461.
58. Rosen SD, Murphy K, Leff AP, Cunningham V, Wise RJ, Adams L, et al. Is central nervous system processing altered in patients with heart failure? Eur Heart J. 2004; 25(11):952–962. PMID: 15172467.
59. Barber M, Morton JJ, Macfarlane PW, Barlow N, Roditi G, Stott DJ. Elevated troponin levels are associated with sympathoadrenal activation in acute ischaemic stroke. Cerebrovasc Dis. 2007; 23(4):260–266. PMID: 17199083.
60. Sugumar H, Nanayakkara S, Prabhu S, Voskoboinik A, Kaye DM, Ling LH, et al. Pathophysiology of atrial fibrillation and heart failure: dangerous interactions. Cardiol Clin. 2019; 37(2):131–138. PMID: 30926014.
61. Stefansdottir H, Arnar DO, Aspelund T, Sigurdsson S, Jonsdottir MK, Hjaltason H, et al. Atrial fibrillation is associated with reduced brain volume and cognitive function independent of cerebral infarcts. Stroke. 2013; 44(4):1020–1025. PMID: 23444303.
62. Tuegel C, Bansal N. Heart failure in patients with kidney disease. Heart. 2017; 103(23):1848–1853. PMID: 28716974.
63. Kim DS, Kim SW, Gil HW. Emotional and cognitive changes in chronic kidney disease. Korean J Intern Med. 2022; 37(3):489–501. PMID: 35249316.
64. Murtaza A, Dasgupta I. Chronic kidney disease and cognitive impairment. J Stroke Cerebrovasc Dis. 2021; 30(9):105529. PMID: 33323323.
65. Xanthopoulos A, Starling RC, Kitai T, Triposkiadis F. Heart failure and liver disease: cardiohepatic interactions. JACC Heart Fail. 2019; 7(2):87–97. PMID: 30553904.
66. Wang SC, Chen YC, Chen SJ, Lee CH, Cheng CM. Alcohol addiction, gut microbiota, and alcoholism treatment: a review. Int J Mol Sci. 2020; 21(17):6413. PMID: 32899236.
67. Kjærgaard K, Mikkelsen AC, Wernberg CW, Grønkjær LL, Eriksen PL, Damholdt MF, et al. Cognitive dysfunction in non-alcoholic fatty liver disease-current knowledge, mechanisms and perspectives. J Clin Med. 2021; 10(4):673. PMID: 33572481.
68. Nardelli S, Gioia S, Faccioli J, Riggio O, Ridola L. Sarcopenia and cognitive impairment in liver cirrhosis: a viewpoint on the clinical impact of minimal hepatic encephalopathy. World J Gastroenterol. 2019; 25(35):5257–5265. PMID: 31558871.
69. Hadjihambi A, Arias N, Sheikh M, Jalan R. Hepatic encephalopathy: a critical current review. Hepatol Int. 2018; 12(Suppl 1):135–147. PMID: 28770516.
70. Loncar G, Obradovic D, Thiele H, von Haehling S, Lainscak M. Iron deficiency in heart failure. ESC Heart Fail. 2021; 8(4):2368–2379. PMID: 33932115.
71. Kung WM, Yuan SP, Lin MS, Wu CC, Islam MM, Atique S, et al. Anemia and the risk of cognitive impairment: an updated systematic review and meta-analysis. Brain Sci. 2021; 11(6):777. PMID: 34208355.
72. Dodson JA, Truong TT, Towle VR, Kerins G, Chaudhry SI. Cognitive impairment in older adults with heart failure: prevalence, documentation, and impact on outcomes. Am J Med. 2013; 126(2):120–126. PMID: 23331439.
73. Ciesielska N, Sokołowski R, Mazur E, Podhorecka M, Polak-Szabela A, Kędziora-Kornatowska K. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr Pol. 2016; 50(5):1039–1052. PMID: 27992895.
74. Rosli R, Tan MP, Gray WK, Subramanian P, Chin AV. Cognitive assessment tools in Asia: a systematic review. Int Psychogeriatr. 2016; 28(2):189–210. PMID: 26450414.
75. Zhuang L, Yang Y, Gao J. Cognitive assessment tools for mild cognitive impairment screening. J Neurol. 2021; 268(5):1615–1622. PMID: 31414193.
76. Holsinger T, Deveau J, Boustani M, Williams JW Jr. Does this patient have dementia? JAMA. 2007; 297(21):2391–2404. PMID: 17551132.
77. Huo Z, Lin J, Bat BK, Chan JY, Tsoi KK, Yip BH. Diagnostic accuracy of dementia screening tools in the Chinese population: a systematic review and meta-analysis of 167 diagnostic studies. Age Ageing. 2021; 50(4):1093–1101. PMID: 33625478.
78. Moroni F, Ammirati E, Hainsworth AH, Camici PG. Association of white matter hyperintensities and cardiovascular disease: the importance of microcirculatory disease. Circ Cardiovasc Imaging. 2020; 13(8):e010460. PMID: 33232175.
79. Shen DC, Wu SL, Shi YZ, Wang S, Zhang YM, Wang CX. The correlation between white matter hyperintensity and balance disorder and fall risk: an observational, prospective cohort study. Chronic Dis Transl Med. 2016; 2(3):173–180. PMID: 29063039.
80. Herrmann LL, Le Masurier M, Ebmeier KP. White matter hyperintensities in late life depression: a systematic review. J Neurol Neurosurg Psychiatry. 2008; 79(6):619–624. PMID: 17717021.
81. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010; 341:c3666. PMID: 20660506.
82. Stegmann T, Chu ML, Witte VA, Villringer A, Kumral D, Riedel-Heller SG, et al. Heart failure is independently associated with white matter lesions: insights from the population-based LIFE-Adult Study. ESC Heart Fail. 2021; 8(1):697–704. PMID: 33321550.
83. Chen FX, Kang DZ, Chen FY, Liu Y, Wu G, Li X, et al. Gray matter atrophy associated with mild cognitive impairment in Parkinson’s disease. Neurosci Lett. 2016; 617:160–165. PMID: 26742642.
84. Du Y, Yan F, Zhao L, Fang Y, Qiu Q, Wei W, et al. Depression symptoms moderate the relationship between gray matter volumes and cognitive function in patients with mild cognitive impairment. J Psychiatr Res. 2022; 151:516–522. PMID: 35636026.
85. Alosco ML, Brickman AM, Spitznagel MB, Narkhede A, Griffith EY, Cohen R, et al. Reduced gray matter volume is associated with poorer instrumental activities of daily living performance in heart failure. J Cardiovasc Nurs. 2016; 31(1):31–41. PMID: 25419946.
86. Mueller K, Thiel F, Beutner F, Teren A, Frisch S, Ballarini T, et al. Brain damage with heart failure: cardiac biomarker alterations and gray matter decline. Circ Res. 2020; 126(6):750–764. PMID: 31969053.
87. Frey A, Homola GA, Henneges C, Mühlbauer L, Sell R, Kraft P, et al. Temporal changes in total and hippocampal brain volume and cognitive function in patients with chronic heart failure-the COGNITION.MATTERS-HF cohort study. Eur Heart J. 2021; 42(16):1569–1578. PMID: 33496311.
88. Jiang Y, Wang L, Lu Z, Chen S, Teng Y, Li T, et al. Brain imaging changes and related risk factors of cognitive impairment in patients with heart failure. Front Cardiovasc Med. 2022; 8:838680. PMID: 35155623.
89. Kulason S, Tward DJ, Brown T, Sicat CS, Liu CF, Ratnanather JT, et al. Cortical thickness atrophy in the transentorhinal cortex in mild cognitive impairment. Neuroimage Clin. 2019; 21:101617. PMID: 30552075.
90. Shin NY, Bang M, Yoo SW, Kim JS, Yun E, Yoon U, et al. Cortical thickness from MRI to predict conversion from mild cognitive impairment to dementia in Parkinson disease: a machine learning-based model. Radiology. 2021; 300(2):390–399. PMID: 34032515.
91. Kumar R, Yadav SK, Palomares JA, Park B, Joshi SH, Ogren JA, et al. Reduced regional brain cortical thickness in patients with heart failure. PLoS One. 2015; 10(5):e0126595. PMID: 25962164.
92. Teng Z, Dong Y, Zhang D, An J, Lv P. Cerebral small vessel disease and post-stroke cognitive impairment. Int J Neurosci. 2017; 127(9):824–830. PMID: 27838946.
93. Makin SD, Turpin S, Dennis MS, Wardlaw JM. Cognitive impairment after lacunar stroke: systematic review and meta-analysis of incidence, prevalence and comparison with other stroke subtypes. J Neurol Neurosurg Psychiatry. 2013; 84(8):893–900. PMID: 23457225.
94. Kwan A, Wei J, Dowling NM, Power MC, Nadareishvili Z. SPS3 Study Group. Cognitive impairment after lacunar stroke and the risk of recurrent stroke and death. Cerebrovasc Dis. 2021; 50(4):383–389. PMID: 33752211.
95. Yates PA, Villemagne VL, Ellis KA, Desmond PM, Masters CL, Rowe CC. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front Neurol. 2014; 4:205. PMID: 24432010.
96. Gregoire SM, Smith K, Jäger HR, Benjamin M, Kallis C, Brown MM, et al. Cerebral microbleeds and long-term cognitive outcome: longitudinal cohort study of stroke clinic patients. Cerebrovasc Dis. 2012; 33(5):430–435. PMID: 22456577.
97. Hierro-Bujalance C, Infante-Garcia C, Del Marco A, Herrera M, Carranza-Naval MJ, Suarez J, et al. Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer’s disease and type 2 diabetes. Alzheimers Res Ther. 2020; 12(1):40. PMID: 32264944.
98. Mui JV, Zhou J, Lee S, Leung KS, Lee TT, Chou OH, et al. Sodium-glucose cotransporter 2 (SGLT2) inhibitors vs. dipeptidyl peptidase-4 (DPP4) inhibitors for new-onset dementia: a propensity score-matched population-based study with competing risk analysis. Front Cardiovasc Med. 2021; 8:747620. PMID: 34746262.
99. Mone P, Lombardi A, Gambardella J, Pansini A, Macina G, Morgante M, et al. Empagliflozin improves cognitive impairment in frail older adults with type 2 diabetes and heart failure with preserved ejection fraction. Diabetes Care. 2022; 45(5):1247–1251. PMID: 35287171.
100. Rizzo MR, Di Meo I, Polito R, Auriemma MC, Gambardella A, di Mauro G, et al. Cognitive impairment and type 2 diabetes mellitus: focus of SGLT2 inhibitors treatment. Pharmacol Res. 2022; 176:106062. PMID: 35017046.
101. Pawlos A, Broncel M, Woźniak E, Gorzelak-Pabiś P. Neuroprotective effect of SGLT2 inhibitors. Molecules. 2021; 26(23):7213. PMID: 34885795.
102. Singh PK, Chen ZL, Ghosh D, Strickland S, Norris EH. Increased plasma bradykinin level is associated with cognitive impairment in Alzheimer’s patients. Neurobiol Dis. 2020; 139:104833. PMID: 32173555.
103. Cannon JA, Shen L, Jhund PS, Kristensen SL, Køber L, Chen F, et al. Dementia-related adverse events in PARADIGM-HF and other trials in heart failure with reduced ejection fraction. Eur J Heart Fail. 2017; 19(1):129–137. PMID: 27868321.
104. Zuccalà G, Onder G, Marzetti E, Monaco MR, Cesari M, Cocchi A, et al. Use of angiotensin-converting enzyme inhibitors and variations in cognitive performance among patients with heart failure. Eur Heart J. 2005; 26(3):226–233. PMID: 15618043.
105. Deng Z, Jiang J, Wang J, Pan D, Zhu Y, Li H, et al. Angiotensin receptor blockers are associated with a lower risk of progression from mild cognitive impairment to dementia. Hypertension. 2022; 79(10):2159–2169. PMID: 35766029.
106. Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the brain: the renin angiotensin system. Int J Mol Sci. 2018; 19(3):876. PMID: 29543776.
107. Bhanu C, Nimmons D, Petersen I, Orlu M, Davis D, Hussain H, et al. Drug-induced orthostatic hypotension: a systematic review and meta-analysis of randomised controlled trials. PLoS Med. 2021; 18(11):e1003821. PMID: 34752479.
108. Wingenfeld K, Otte C. Mineralocorticoid receptor function and cognition in health and disease. Psychoneuroendocrinology. 2019; 105:25–35. PMID: 30243757.
109. Riemer TG, Villagomez Fuentes LE, Algharably EA, Schäfer MS, Mangelsen E, Fürtig MA, et al. Do β-blockers cause depression?: systematic review and meta-analysis of psychiatric adverse events during β-blocker therapy. Hypertension. 2021; 77(5):1539–1548. PMID: 33719510.
110. Holm H, Ricci F, Di Martino G, Bachus E, Nilsson ED, Ballerini P, et al. Beta-blocker therapy and risk of vascular dementia: a population-based prospective study. Vascul Pharmacol. 2020; 125-126:106649. PMID: 31958512.
111. Safarudin F, Iloabuchi CO, Ladani A, Sambamoorthi U. The association of beta-blocker use to cognitive impairment among adults with hypertension or cardiovascular diseases in the United States. Chronic Pain Manag. 2020; 4:125. PMID: 32661512.
112. Hoth KF, Poppas A, Ellison KE, Paul RH, Sokobin A, Cho Y, et al. Link between change in cognition and left ventricular function following cardiac resynchronization therapy. J Cardiopulm Rehabil Prev. 2010; 30(6):401–408. PMID: 20562712.
113. Zimpfer D, Wieselthaler G, Czerny M, Fakin R, Haider D, Zrunek P, et al. Neurocognitive function in patients with ventricular assist devices: a comparison of pulsatile and continuous blood flow devices. ASAIO J. 2006; 52(1):24–27. PMID: 16436886.
114. Lovell J, Pham T, Noaman SQ, Davis MC, Johnson M, Ibrahim JE. Self-management of heart failure in dementia and cognitive impairment: a systematic review. BMC Cardiovasc Disord. 2019; 19(1):99. PMID: 31035921.
115. Hawkins LA, Kilian S, Firek A, Kashner TM, Firek CJ, Silvet H. Cognitive impairment and medication adherence in outpatients with heart failure. Heart Lung. 2012; 41(6):572–582. PMID: 22784869.
116. Patel A, Parikh R, Howell EH, Hsich E, Landers SH, Gorodeski EZ. Mini-cog performance: novel marker of post discharge risk among patients hospitalized for heart failure. Circ Heart Fail. 2015; 8(1):8–16. PMID: 25477431.
117. Matsue Y, Kamiya K, Saito H, Saito K, Ogasahara Y, Maekawa E, et al. Prevalence and prognostic impact of the coexistence of multiple frailty domains in elderly patients with heart failure: the FRAGILE-HF cohort study. Eur J Heart Fail. 2020; 22(11):2112–2119. PMID: 32500539.
118. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. Circulation. 2022; 145(18):e895–1032. PMID: 35363499.
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr