2. Bahaa K, Noor G, Yousif Y. Naretto S, editor. 2011. The artificial intelligence approach for diagnosis, treatment and modelling in orthodontic. Principles in contemporary orthodontics. IntechOpen;London: p. 451–92. DOI:
10.5772/19597. PMID:
21336108.
Article
3. Xie X, Wang L, Wang A. 2010; Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod. 80:262–6. DOI:
10.2319/111608-588.1. PMID:
19905850.
Article
4. Jung SK, Kim TW. 2016; New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofacial Orthop. 149:127–33. DOI:
10.1016/j.ajodo.2015.07.030. PMID:
26718386.
Article
5. Cui C, Wang S, Zhou J, Dong A, Xie F, Li H, et al. 2020; Machine learning analysis of image data based on detailed MR image reports for nasopharyngeal carcinoma prognosis. Biomed Res Int. 2020:8068913. DOI:
10.1155/2020/8068913. PMID:
32149139. PMCID:
PMC7054759.
Article
6. Behr M, Noseworthy M, Kumbhare D. 2019; Feasibility of a support vector machine classifier for myofascial pain syndrome: diagnostic case-control study. J Ultrasound Med. 38:2119–32. DOI:
10.1002/jum.14909. PMID:
30614553.
Article
9. Kotthof L, Thornton C, Hoos HH, Hutter F, Leyton-Brown K. 2017; Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA. J Mach Learn Res. 18:1–5.
10. Orlenko A, Kofink D, Lyytikäinen LP, Nikus K, Mishra P, Kuukasjärvi P, et al. 2020; Model selection for metabolomics: predicting diagnosis of coronary artery disease using automated machine learning. Bioinformatics. 36:1772–8. DOI:
10.1093/bioinformatics/btz796. PMID:
31702773. PMCID:
PMC7703753.
Article
11. Waring J, Lindvall C, Umeton R. 2020; Automated machine learning: review of the state-of-the-art and opportunities for healthcare. Artif Intell Med. 104:101822. DOI:
10.1016/j.artmed.2020.101822. PMID:
32499001.
Article
12. Lee JH, Kim DH, Jeong SN, Choi SH. 2018; Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 77:106–11. DOI:
10.1016/j.jdent.2018.07.015. PMID:
30056118.
Article
13. Lee JH, Kim DH, Jeong SN, Choi SH. 2018; Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 48:114–23. DOI:
10.5051/jpis.2018.48.2.114. PMID:
29770240. PMCID:
PMC5944222.
Article
14. Suebnukarn S, Rungcharoenporn N, Sangsuratham S. 2008; A Bayesian decision support model for assessment of endodontic treatment outcome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 106:e48–58. DOI:
10.1016/j.tripleo.2008.05.011. PMID:
18602284.
Article
15. Murata S, Lee C, Tanikawa C, Date S. 2017. Towards a fully automated diagnostic system for orthodontic treatment in dentistry. Paper presented at: 2017 IEEE 13th International Conference on e-Science (e-Science). 2017 Oct 24-27; Auckland, New Zealand. Piscataway. IEEE;p. 1–8. DOI:
10.1109/eScience.2017.12.
Article
16. Scala A, Auconi P, Scazzocchio M, Caldarelli G, McNamara JA. 2014; Franchi L. Complex networks for data-driven medicine: the case of Class III dentoskeletal disharmony. New J Phys. 16:115017. DOI:
10.1088/1367-2630/16/11/115017.
17. Auconi P, Scazzocchio M, Cozza P, McNamara JA Jr, Franchi L. 2015; Prediction of Class III treatment outcomes through orthodontic data mining. Eur J Orthod. 37:257–67. DOI:
10.1093/ejo/cju038. PMID:
25190642.
Article
18. Sokic E, Tiro A, Sokic-Begovic E, Nakas E. 2012; Semi-automatic assessment of cervical vertebral maturation stages using cephalograph images and centroid-based clustering. Acta Stomatol Croat. 46:280–90.
19. Martina R, Teti R, D'Addona D, Iodice G. Pham DT, Eldukhri EE, Soroka AJ, editors. 2006. Neural network based system for decision making support in orthodontic extractions. Intelligent production machines and systems. Elsevier Science;p. 235–40. DOI:
10.1016/B978-008045157-2/50045-6.
Article
20. Takada K, Yagi M, Horiguchi E. 2009; Computational formulation of orthodontic tooth-extraction decisions. Part I: to extract or not to extract. Angle Orthod. 79:885–91. DOI:
10.2319/081908-436.1. PMID:
19705936.
22. Zaytoun ML. 2019. An empirical approach to the extraction versus non-extraction decision in orthodontics [Master's thesis]. University of North Carolina at Chapel Hill;Chapel Hill:
26. Mew J, Trenouth M. 2018; How many teeth are extracted as part of orthodontic treatment? A survey of 2038 UK residents. Int J Dent Oral Sci. S1:02:001:1–5. DOI:
10.19070/2377-8075-SI02-01001.
28. Jackson TH, Guez C, Lin FC, Proffit WR, Ko CC. 2017; Extraction frequencies at a university orthodontic clinic in the 21st century: demographic and diagnostic factors affecting the likelihood of extraction. Am J Orthod Dentofacial Orthop. 151:456–62. DOI:
10.1016/j.ajodo.2016.08.021. PMID:
28257729. PMCID:
PMC5338460.
Article
30. Proffit WR, Fields HW, Sarver DM. 2013. Contemporary orthodontics. 5th ed. Elsevier;St. Louis: