Korean J Orthod.  2022 Mar;52(2):102-111. 10.4041/kjod.2022.52.2.102.

Use of automated artificial intelligence to predict the need for orthodontic extractions

Affiliations
  • 1Graduate Orthodontic Program, Discipline of Orthodontics, Faculty of Odontology, Universidad de los Andes, Santiago, Chile
  • 2Private Practice, Santiago, Chile
  • 3Department of Computer Science, School of Computing Technologies, RMIT University, Melbourne, Australia

Abstract


Objective
To develop and explore the usefulness of an artificial intelligence system for the prediction of the need for dental extractions during orthodontic treatments based on gender, model variables, and cephalometric records.
Methods
The gender, model variables, and radiographic records of 214 patients were obtained from an anonymized data bank containing 314 cases treated by two experienced orthodontists. The data were processed using an automated machine learning software (Auto-WEKA) and used to predict the need for extractions.
Results
By generating and comparing several prediction models, an accuracy of 93.9% was achieved for determining whether extraction is required or not based on the model and radiographic data. When only model variables were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was achieved if only cephalometric information was used.
Conclusions
The use of an automated machine learning system allows the generation of orthodontic extraction prediction models. The accuracy of the optimal extraction prediction models increases with the combination of model and cephalometric data for the analytical process.

Keyword

Extraction vs. non-extraction; Computer algorithm; Decision tree; Orthodontic Index

Reference

References

1. Hassibi K. 2016. Oct. 10. Machine learning vs. traditional statistics: different philosophies, different approaches [Internet]. Data Science Central;Issaquah: Available from: https://www.datasciencecentral.com/profiles/blogs/machine-learning-vs-traditional-statistics-different-philosophi-1. cited 2019 Oct 25.
2. Bahaa K, Noor G, Yousif Y. Naretto S, editor. 2011. The artificial intelligence approach for diagnosis, treatment and modelling in orthodontic. Principles in contemporary orthodontics. IntechOpen;London: p. 451–92. DOI: 10.5772/19597. PMID: 21336108.
Article
3. Xie X, Wang L, Wang A. 2010; Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod. 80:262–6. DOI: 10.2319/111608-588.1. PMID: 19905850.
Article
4. Jung SK, Kim TW. 2016; New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofacial Orthop. 149:127–33. DOI: 10.1016/j.ajodo.2015.07.030. PMID: 26718386.
Article
5. Cui C, Wang S, Zhou J, Dong A, Xie F, Li H, et al. 2020; Machine learning analysis of image data based on detailed MR image reports for nasopharyngeal carcinoma prognosis. Biomed Res Int. 2020:8068913. DOI: 10.1155/2020/8068913. PMID: 32149139. PMCID: PMC7054759.
Article
6. Behr M, Noseworthy M, Kumbhare D. 2019; Feasibility of a support vector machine classifier for myofascial pain syndrome: diagnostic case-control study. J Ultrasound Med. 38:2119–32. DOI: 10.1002/jum.14909. PMID: 30614553.
Article
7. Peeken JC, Spraker MB, Knebel C, Dapper H, Pfeiffer D, Devecka M, et al. 2019; Tumor grading of soft tissue sarcomas using MRI-based radiomics. EBioMedicine. 48:332–40. DOI: 10.1016/j.ebiom.2019.08.059. PMID: 31522983. PMCID: PMC6838361.
Article
8. Dinsmore T. 2016. Mar. 30. Automated machine learning: a short history [Internet]. DataRobot;Boston: Available from: https://www.datarobot.com/blog/automated-machine-learning-short-history/. cited 2019 Nov 13.
9. Kotthof L, Thornton C, Hoos HH, Hutter F, Leyton-Brown K. 2017; Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA. J Mach Learn Res. 18:1–5.
10. Orlenko A, Kofink D, Lyytikäinen LP, Nikus K, Mishra P, Kuukasjärvi P, et al. 2020; Model selection for metabolomics: predicting diagnosis of coronary artery disease using automated machine learning. Bioinformatics. 36:1772–8. DOI: 10.1093/bioinformatics/btz796. PMID: 31702773. PMCID: PMC7703753.
Article
11. Waring J, Lindvall C, Umeton R. 2020; Automated machine learning: review of the state-of-the-art and opportunities for healthcare. Artif Intell Med. 104:101822. DOI: 10.1016/j.artmed.2020.101822. PMID: 32499001.
Article
12. Lee JH, Kim DH, Jeong SN, Choi SH. 2018; Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 77:106–11. DOI: 10.1016/j.jdent.2018.07.015. PMID: 30056118.
Article
13. Lee JH, Kim DH, Jeong SN, Choi SH. 2018; Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 48:114–23. DOI: 10.5051/jpis.2018.48.2.114. PMID: 29770240. PMCID: PMC5944222.
Article
14. Suebnukarn S, Rungcharoenporn N, Sangsuratham S. 2008; A Bayesian decision support model for assessment of endodontic treatment outcome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 106:e48–58. DOI: 10.1016/j.tripleo.2008.05.011. PMID: 18602284.
Article
15. Murata S, Lee C, Tanikawa C, Date S. 2017. Towards a fully automated diagnostic system for orthodontic treatment in dentistry. Paper presented at: 2017 IEEE 13th International Conference on e-Science (e-Science). 2017 Oct 24-27; Auckland, New Zealand. Piscataway. IEEE;p. 1–8. DOI: 10.1109/eScience.2017.12.
Article
16. Scala A, Auconi P, Scazzocchio M, Caldarelli G, McNamara JA. 2014; Franchi L. Complex networks for data-driven medicine: the case of Class III dentoskeletal disharmony. New J Phys. 16:115017. DOI: 10.1088/1367-2630/16/11/115017.
17. Auconi P, Scazzocchio M, Cozza P, McNamara JA Jr, Franchi L. 2015; Prediction of Class III treatment outcomes through orthodontic data mining. Eur J Orthod. 37:257–67. DOI: 10.1093/ejo/cju038. PMID: 25190642.
Article
18. Sokic E, Tiro A, Sokic-Begovic E, Nakas E. 2012; Semi-automatic assessment of cervical vertebral maturation stages using cephalograph images and centroid-based clustering. Acta Stomatol Croat. 46:280–90.
19. Martina R, Teti R, D'Addona D, Iodice G. Pham DT, Eldukhri EE, Soroka AJ, editors. 2006. Neural network based system for decision making support in orthodontic extractions. Intelligent production machines and systems. Elsevier Science;p. 235–40. DOI: 10.1016/B978-008045157-2/50045-6.
Article
20. Takada K, Yagi M, Horiguchi E. 2009; Computational formulation of orthodontic tooth-extraction decisions. Part I: to extract or not to extract. Angle Orthod. 79:885–91. DOI: 10.2319/081908-436.1. PMID: 19705936.
21. Li P, Kong D, Tang T, Su D, Yang P, Wang H, et al. 2019; Orthodontic treatment planning based on artificial neural networks. Sci Rep. 9:2037. DOI: 10.1038/s41598-018-38439-w. PMID: 30765756. PMCID: PMC6375961.
Article
22. Zaytoun ML. 2019. An empirical approach to the extraction versus non-extraction decision in orthodontics [Master's thesis]. University of North Carolina at Chapel Hill;Chapel Hill:
23. Suhail Y, Upadhyay M, Chhibber A, Kshitiz . 2020; Machine learning for the diagnosis of orthodontic extractions: a computational analysis using ensemble learning. Bioengineering (Basel). 7:55. DOI: 10.3390/bioengineering7020055. PMID: 32545428. PMCID: PMC7355468. PMID: 9704f2cbc3224fbf832687343e932ef7.
Article
24. Paton C, Kobayashi S. 2019; An open science approach to artificial intelligence in healthcare. Yearb Med Inform. 28:47–51. DOI: 10.1055/s-0039-1677898. PMID: 31022753. PMCID: PMC6697543.
Article
25. The Lancet Respiratory Medicine. 2018; Opening the black box of machine learning. Lancet Respir Med. 6:801. DOI: 10.1016/S2213-2600(18)30425-9. PMID: 30343029.
26. Mew J, Trenouth M. 2018; How many teeth are extracted as part of orthodontic treatment? A survey of 2038 UK residents. Int J Dent Oral Sci. S1:02:001:1–5. DOI: 10.19070/2377-8075-SI02-01001.
27. Dardengo Cde S, Fernandes LQ, Capelli Júnior J. 2016; Frequency of orthodontic extraction. Dental Press J Orthod. 21:54–9. DOI: 10.1590/2177-6709.21.1.054-059.oar. PMID: 27007762. PMCID: PMC4816586.
Article
28. Jackson TH, Guez C, Lin FC, Proffit WR, Ko CC. 2017; Extraction frequencies at a university orthodontic clinic in the 21st century: demographic and diagnostic factors affecting the likelihood of extraction. Am J Orthod Dentofacial Orthop. 151:456–62. DOI: 10.1016/j.ajodo.2016.08.021. PMID: 28257729. PMCID: PMC5338460.
Article
29. Imbalanced data [Internet]. Google Developers;Available from: https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data. cited 2021 Jul 27.
30. Proffit WR, Fields HW, Sarver DM. 2013. Contemporary orthodontics. 5th ed. Elsevier;St. Louis:
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr