1. Arık SÖ, Ibragimov B, Xing L. 2017; Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging (Bellingham). 4:014501. DOI:
10.1117/1.JMI.4.1.014501. PMID:
28097213. PMCID:
PMC5220585.
2. Kim H, Shim E, Park J, Kim YJ, Lee U, Kim Y. 2020; Web-based fully automated cephalometric analysis by deep learning. Comput Methods Programs Biomed. 194:105513. DOI:
10.1016/j.cmpb.2020.105513. PMID:
32403052.
Article
3. Nishimoto S, Sotsuka Y, Kawai K, Ishise H, Kakibuchi M. 2019; Personal computer-based cephalometric landmark detection with deep learning, using cephalograms on the internet. J Craniofac Surg. 30:91–5. DOI:
10.1097/SCS.0000000000004901. PMID:
30439733.
Article
4. Erkan M, Gurel HG, Nur M, Demirel B. 2012; Reliability of four different computerized cephalometric analysis programs. Eur J Orthod. 34:318–21. DOI:
10.1093/ejo/cjr008. PMID:
21502380.
Article
5. Wen J, Liu S, Ye X, Xie X, Li J, Li H, et al. 2017; Comparative study of cephalometric measurements using 3 imaging modalities. J Am Dent Assoc. 148:913–21. DOI:
10.1016/j.adaj.2017.07.030. PMID:
29042006.
Article
6. Rudolph DJ, Sinclair PM, Coggins JM. 1998; Automatic computerized radiographic identification of cephalometric landmarks. Am J Orthod Dentofacial Orthop. 113:173–9. DOI:
10.1016/S0889-5406(98)70289-6. PMID:
9484208.
Article
8. Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. 2020; Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 99:249–56. DOI:
10.1177/0022034520901715. PMID:
31977286.
Article
9. Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, et al. 2019; Automated identification of cephalometric landmarks: part 1-comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 89:903–9. DOI:
10.2319/022019-127.1. PMID:
31282738. PMCID:
PMC8109157.
Article
10. Hwang HW, Park JH, Moon JH, Yu Y, Kim H, Her SB, et al. 2020; Automated identification of cephalometric landmarks: part 2-might it be better than human? Angle Orthod. 90:69–76. DOI:
10.2319/022019-129.1. PMID:
31335162. PMCID:
PMC8087057.
Article
11. Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. 2020; Artificial intelligence in orthodontics: evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J Orofac Orthop. 81:52–68. DOI:
10.1007/s00056-019-00203-8. PMID:
31853586.
12. Korean Association of Orthodontics Malocclusion White Paper Publication Committee. 1997. Cephalometric analysis of normal occlusion in Korean adults. Korean Association of Orthodontists;Seoul:
13. Bujang MA, Baharum N. 2017; Guidelines of the minimum sample size requirements for Cohen's Kappa. Epidemiol Biostat Public Health. 14:e12267.
15. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. 2015; ImageNet large scale visual recognition challenge. Int J Comput Vis. 115:211–52. DOI:
10.1007/s11263-015-0816-y. PMID:
31222375.
Article
16. Huang G, Liu Z, van Der Maaten L, Weinberger KQ. 2017. Densely connected convolutional networks. Paper presented at: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Jul 21-26; Honolulu, USA. IEEE;Piscataway: p. 2261–9. DOI:
10.1109/CVPR.2017.243. PMCID:
PMC5598342.
Article
17. Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, et al. 2017. Jun. 8. Accurate, large minibatch SGD: training ImageNet in 1 hour [Internet]. arxiv. Available from:
https://arxiv.org/abs/1706.02677. updated 2018 Apr 30; cited 2020 Aug 7.
18. Jia X, Song S, He W, Wang Y, Rong H, Zhou F, et al. 2018. Jul. 30. Highly scalable deep learning training system with mixed-precision: training ImageNet in four minutes [Internet]. arxiv. Available from:
https://arxiv.org/abs/1807.11205. cited 2020 Aug 7.
19. Ioffe S, Szegedy C. 2015. Feb. 11. Batch normalization: accelerating deep network training by reducing internal covariate shift [Internet]. arxiv. Available from:
https://arxiv.org/abs/1502.03167. updated 2015 Mar 2; cited 2020 Sep 8.
20. Wu Y, He K. Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. 2018. Group normalization. ECCV 2018: Computer vision - ECCV 2018. Springer;Cham: p. 3–19. DOI:
10.1007/978-3-030-01261-8_1.
21. Deng J, Guo J, Xue N, Zafeiriou S. 2019. ArcFace: additive angular margin loss for deep face recognition. Paper presented at: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019 Jun 15-20; Long Beach, USA. IEEE;Piscataway: p. 4690–9. DOI:
10.1109/CVPR.2019.00482. PMID:
30957192. PMCID:
PMC6522832.
23. Li J, Fine JP. 2008; ROC analysis with multiple classes and multiple tests: methodology and its application in microarray studies. Biostatistics. 9:566–76. DOI:
10.1093/biostatistics/kxm050. PMID:
18304996.
Article
24. van der Maaten L, Hinton G. 2008; Visualizing data using t-SNE. J Mach Learn Res. 9:2579–605.
25. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. 2017. Grad-CAM: visual explanations from deep networks via gradient-based localization. Paper presented at: 2017 IEEE International Conference on Computer Vision (ICCV). 2017 Oct 22-29; Venice, Italy. IEEE;Piscataway: p. 618–26. DOI:
10.1109/ICCV.2017.74.