Clin Endosc.  2021 Sep;54(5):767-770. 10.5946/ce.2020.195.

Endoscopic Ultrasound Through-the-Needle Biopsy for the Diagnosis of an Abdominal Bronchogenic Cyst

Affiliations
  • 1Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Unit of General and Hepatobiliary Surgery, University of Verona Hospital Trust, University of Verona, Verona, Italy
  • 2Department of Medicine, Gastroenterology and Digestive Endoscopy Unit, The Pancreas Institute, University of Verona Hospital Trust, University of Verona, Verona, Italy
  • 3Department of Diagnostic and Public Health, University of Verona Hospital Trust, University of Verona, Verona, Italy

Abstract

A 57-year-old woman with epigastric pain was diagnosed with a 6-cm abdominal cystic lesion of unclear origin on cross-sectional imaging. Endoscopic ultrasound (EUS) demonstrated a unilocular cyst located between the pancreas, gastric wall, and left adrenal gland, with a regular wall filled with dense fluid with multiple hyperechoic floating spots. A 19-G needle was used to puncture the cyst, but no fluid could be aspirated. Therefore, EUS-guided through-the-needle biopsy (EUS-TTNB) was performed. Histological analysis of the retrieved fragments revealed a fibrous wall lined by “respiratory-type” epithelium with ciliated columnar cells, consistent with the diagnosis of a bronchogenic cyst. Laparoscopic excision was performed, and the diagnosis was confirmed based on the findings of the surgical specimen. Abdominal bronchogenic cysts are extremely uncommon, and a definitive diagnosis is commonly obtained after the examination of surgical specimens due to the lack of pathognomonic findings on cross-sectional imaging and poor cellularity on EUS-guided fine-needle aspiration cytology. EUS-TTNB is useful for establishing a preoperative histological diagnosis, thus supporting the decision-making process.

Keyword

Bronchogenic cyst; Endoscopic ultrasound-guided fine needle aspiration; Endoscopic ultrasound-guided through-the-needle biopsy; Laparoscopy; Pancreatic cyst

Figure

  • Fig. 1. (A) Computed tomography revealing a well-defined, non-infiltrative lesion of uncertain origin with suspected contact with the diaphragmatic crus (white arrow). (B) Endoscopic ultrasound revealing cystic content with a pseudo solid aspect, with a hypoechoic internal echo pattern with multiple hyperechoic spots and comettail artifacts. (C) Ultrasound view of the MorayTM (US Endoscopy, Mentor, OH, USA) microforceps during sampling of the cystic wall. (D) A through-the-needle biopsy specimen of the cystic wall composed of cellular stroma supporting a monolayer of the covering epithelium (hematoxilin and eosin [H&E], ×4). (E) The epithelium is composed of cylindrical, ciliated cells (black arrows) and interspersed mucinous cells. Elastic fibers beneath the epithelium and fusiform mesenchymal cells compose the stroma wall (H&E, ×40). (F) Immunohistochemical positivity for desmin in leiomuscular cells in the wall (desmin, ×40). (G) Macroscopic examination of the specimen showing a multilocular cystic lesion filled with a dense mucoid fluid. (H) Histological examination showing a cyst wall of the bronchogenic type, with “respiratory-type” epithelium overlying a muscularis propria layer with accessory mucinous glands (H&E, ×4).


Reference

1. Barnes NA, Pilling DW. Bronchopulmonary foregut malformations: embryology, radiology and quandary. Eur Radiol. 2003; 13:2659–2673.
Article
2. Crinò SF, Bernardoni L, Brozzi L, et al. Association between macroscopically visible tissue samples and diagnostic accuracy of EUS-guided through-the-needle microforceps biopsy sampling of pancreatic cystic lesions. Gastrointest Endosc. 2019; 90:933–943.
Article
3. Gerle RD, Jaretzki A 3rd, Ashley CA, Berne AS. Congenital bronchopulmonary-foregut malformation. Pulmonary sequestration communicating with the gastrointestinal tract. N Engl J Med. 1968; 278:1413–1419.
4. Sumiyoshi K, Shimizu S, Enjoji M, Iwashita A, Kawakami K. Bronchogenic cyst in the abdomen. Virchows Arch A Pathol Anat Histopathol. 1985; 408:93–98.
Article
5. Herek D, Erbiş H, Kocyigit A, Yagci AB. Retroperitoneal bronchogenic cyst originating from diaphragmatic crura. Indian J Surg. 2015; 77(Suppl 3):1397–1398.
Article
6. Klamt A, Di Loreto A, Valle RD, Lukashok HP, Robles-Medranda C. Role of endoscopic ultrasonography in intramural bronchogenic cysts: case reports and review of the literature. Endosc Ultrasound. 2012; 1:162–164.
Article
7. Sato M, Irisawa A, Bhutani MS, et al. Gastric bronchogenic cyst diagnosed by endosonographically guided fine-needle aspiration biopsy. J Clin Ultrasound. 2008; 36:237–239.
8. Larghi A, Manfrin E, Fabbri C, et al. Interobserver agreement among expert pathologists on through-the-needle microforceps biopsy samples for evaluation of pancreatic cystic lesions. Gastrointest Endosc. 2019; 90:784–792.e4.
Article
9. Tacelli M, Celsa C, Magro B, et al. Diagnostic performance of endoscopic ultrasound through-the-needle microforceps biopsy of pancreatic cystic lesions: systematic review with meta-analysis. Dig Endosc. 2020; 32:1018–1030.
Article
10. Crinò SF, Bernardoni L, Gabbrielli A, et al. Beyond pancreatic cyst epithelium: evidence of ovarian-like stroma in EUS-guided through-the-needle micro-forceps biopsy specimens. Am J Gastroenterol. 2018; 113:1059–1060.
Article
11. Díaz Nieto R, Naranjo Torres A, Gómez Alvarez M, et al. Intraabdominal bronchogenic cyst. J Gastrointest Surg. 2010; 14:756–758.
Article
Full Text Links
  • CE
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr