1. Yamaguchi K, Ditsios K, Middleton WD, Hildebolt CF, Galatz LM, Teefey SA. 2006; The demographic and morphological features of rotator cuff disease: a comparison of asymptomatic and symptomatic shoulders. J Bone Joint Surg Am. 88:1699–704. DOI:
10.2106/00004623-200608000-00002. PMID:
16882890.
2. Wang VM, Wang FC, McNickle AG, et al. 2010; Medial versus lateral supraspinatus tendon properties: implications for double- row rotator cuff repair. Am J Sports Med. 38:2456–63. DOI:
10.1177/0363546510376817. PMID:
20929937. PMCID:
PMC3772634.
3. Le BT, Wu XL, Lam PH, Murrell GA. 2014; Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs. Am J Sports Med. 42:1134–42. DOI:
10.1177/0363546514525336. PMID:
24748610.
4. Castricini R, Longo UG, De Benedetto M, et al. 2011; Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med. 39:258–65. DOI:
10.1177/0363546510390780. PMID:
21160018.
5. Wang LL, Yin XF, Chu XC, Zhang YB, Gong XN. 2018; Platelet-derived growth factor subunit B is required for tendon-bone healing using bone marrow-derived mesenchymal stem cells after rotator cuff repair in rats. J Cell Biochem. 119:8897–908. DOI:
10.1002/jcb.27143. PMID:
30105826.
Article
6. Yonemitsu R, Tokunaga T, Shukunami C, et al. 2019; Fibroblast growth factor 2 enhances tendon-to-bone healing in a rat rotator cuff repair of chronic tears. Am J Sports Med. 47:1701–12. DOI:
10.1177/0363546519836959. PMID:
31038985.
Article
7. Liu Q, Yu Y, Reisdorf RL, et al. 2019; Engineered tendon- fibrocartilage-bone composite and bone marrow-derived mesenchymal stem cell sheet augmentation promotes rotator cuff healing in a non-weight-bearing canine model. Biomaterials. 192:189–98. DOI:
10.1016/j.biomaterials.2018.10.037. PMID:
30453215.
8. Wang C, Hu Q, Song W, Yu W, He Y. 2020; Adipose stem cell- derived exosomes decrease fatty infiltration and enhance rotator cuff healing in a rabbit model of chronic tears. Am J Sports Med. 48:1456–64. DOI:
10.1177/0363546520908847. PMID:
32272021.
11. Mohan G, Magnitsky S, Melkus G, et al. 2016; Kartogenin treatment prevented joint degeneration in a rodent model of osteoarthritis: a pilot study. J Orthop Res. 34:1780–9. DOI:
10.1002/jor.23197. PMID:
26895619. PMCID:
PMC6348064.
Article
12. Xu X, Shi D, Shen Y, et al. 2015; Full-thickness cartilage defects are repaired via a microfracture technique and intraarticular injection of the small-molecule compound kartogenin. Arthritis Res Ther. 17:20. DOI:
10.1186/s13075-015-0537-1. PMID:
25641548. PMCID:
PMC4376363.
Article
13. Zhang J, Yuan T, Zheng N, Zhou Y, Hogan MV, Wang JH. 2017; The combined use of kartogenin and platelet-rich plasma promotes fibrocartilage formation in the wounded rat Achilles tendon entheses. Bone Joint Res. 6:231–44. DOI:
10.1302/2046-3758.64.BJR-2017-0268.R1. PMID:
28450316. PMCID:
PMC5415905.
Article
14. Kim DH, Min SG, Yoon JP, et al. 2019; Mechanical augmentation with absorbable alginate sheet enhances healing of the rotator cuff. Orthopedics. 42:e104–10. DOI:
10.3928/01477447-20181206-04. PMID:
30540880.
Article
17. Wang D, Tan H, Lebaschi AH, et al. 2018; Kartogenin enhances collagen organization and mechanical strength of the repaired enthesis in a murine model of rotator cuff repair. Arthroscopy. 34:2579–87. DOI:
10.1016/j.arthro.2018.04.022. PMID:
30037570. PMCID:
PMC6371391.
Article
19. Shi D, Xu X, Ye Y, et al. 2016; Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration. ACS Nano. 10:1292–9. DOI:
10.1021/acsnano.5b06663. PMID:
26757419.
Article
20. Hu Q, Ding B, Yan X, et al. 2017; Polyethylene glycol modified PAMAM dendrimer delivery of kartogenin to induce chondrogenic differentiation of mesenchymal stem cells. Nanomedicine. 13:2189–98. DOI:
10.1016/j.nano.2017.05.011. PMID:
28579434.
Article