Clin Exp Vaccine Res.  2018 Jan;7(1):24-36. 10.7774/cevr.2018.7.1.24.

Calcium-dependent protein kinases are potential targets for Toxoplasma gondii vaccine

Affiliations
  • 1Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. ghafarif@modares.ac.ir

Abstract

Toxoplasma gondii belongs to the Apicomplexa phylum that caused a widespread zoonotic infection in wide range of intermediate hosts. Over one-third of the world's population are latently infected with T. gondii and carry it. The complex life cycle of T. gondii indicates the presence of a plurality of antigenic epitopes. During the recent years, continuous efforts of scientists have made precious advances to elucidate the different aspects of the cell and molecular biology of T. gondii. Despite of great progresses, the development of vaccine candidates for preventing of T. gondii infection in men and animals is still remains a challenge. The calcium-dependent protein kinases (CDPKs) belongs to the superfamily of kinases, which restricted to the apicomplexans, ciliates, and plants. It has been documented that they contribute several functions in the life cycle of T. gondii such as gliding motility, cell invasion, and egress as well as some other critical developmental processes. In current paper, we reviewed the recent progress concerning the development of CDPK-based vaccines against acute and chronic T. gondii.

Keyword

Toxoplasma gondii; Calcium-dependent protein kinase; Vaccines; Immunization; Adjuvant

MeSH Terms

Animals
Apicomplexa
Cell Movement
Epitopes
Humans
Immunization
Life Cycle Stages
Male
Molecular Biology
Phosphotransferases
Protein Kinases*
Toxoplasma*
Vaccines
Zoonoses
Epitopes
Phosphotransferases
Protein Kinases
Vaccines

Figure

  • Fig. 1 The biologic stages and the main transmission routes of Toxoplasma gondii. The only known definitive hosts for T. gondii are members of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat's feces (1). Although oocysts are usually only shed for 1–2 weeks, large numbers may be shed. Oocysts take 1–5 days to sporulate in the environment and become infective. Intermediate hosts in nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts (2). Oocysts transform into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites (3). Cats become infected after consuming intermediate hosts harboring tissue cysts (4). Cats may also become infected directly by ingestion of sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporulated oocysts in the environment (5). Humans can become infected by any of several routes: eating undercooked meat of animals harboring tissue cysts (6); consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated soil or changing the litter box of a pet cat) (7); blood transfusion or organ transplantation (8); transplacentally from mother to fetus (9). Diagnosis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens (10). Diagnosis of congenital infections can be achieved by detecting T. gondii DNA in amniotic fluid using molecular methods such as polymerase chain reaction (11) Adapted from Centers for Disease Control and Prevention [20].


Reference

1. Nasiri V, Teymurzadeh S, Karimi G, Nasiri M. Molecular detection of Toxoplasma gondii in snakes. Exp Parasitol. 2016; 169:102–106. PMID: 27522027.
Article
2. Dubey JP. The history of Toxoplasma gondii: the first 100 years. J Eukaryot Microbiol. 2008; 55:467–475. PMID: 19120791.
3. Foroutan M, Dalvand S, Daryani A, et al. Rolling up the pieces of a puzzle: a systematic review and meta-analysis of the prevalence of toxoplasmosis in Iran. Alex J Med. 2017; 6. 23. –[Epub]. DOI: 10.4132/10.1016/j.ajme.2017.06.003.
Article
4. Rostami A, Riahi SM, Fakhri Y, et al. The global seroprevalence of Toxoplasma gondii among wild boars: a systematic review and meta-analysis. Vet Parasitol. 2017; 244:12–20. PMID: 28917302.
Article
5. Khademvatan S, Foroutan M, Hazrati-Tappeh K, et al. Toxoplasmosis in rodents: a systematic review and meta-analysis in Iran. J Infect Public Health. 2017; 10:487–493. PMID: 28237696.
Article
6. Foroutan M, Majidiani H. Toxoplasma gondii: are there any implications for routine blood screening. Int J Infect. 2017; 10. 31. [Epub]. DOI: 10.5812/iji.62886.
Article
7. Foroutan-Rad M, Majidiani H, Dalvand S, et al. Toxoplasmosis in blood donors: a systematic review and meta-analysis. Transfus Med Rev. 2016; 30:116–122. PMID: 27145927.
Article
8. Nicolle C, Manceaux L. Sur une infection à corps de Leishman (ou organismes voisins) du gondi. CR Acad Sci. 1908; 147:763–766.
9. Pappas G, Roussos N, Falagas ME. Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol. 2009; 39:1385–1394. PMID: 19433092.
Article
10. Wang ZD, Liu HH, Ma ZX, et al. Toxoplasma gondii infection in immunocompromised patients: a systematic review and meta-analysis. Front Microbiol. 2017; 8:389. PMID: 28337191.
Article
11. Sullivan WJ Jr, Jeffers V. Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev. 2012; 36:717–733. PMID: 22091606.
12. Weiss LM, Dubey JP. Toxoplasmosis: a history of clinical observations. Int J Parasitol. 2009; 39:895–901. PMID: 19217908.
Article
13. Mohammadnejad F, Ghaffarifar F, Mobedi I. HIV and parasite co-infection epidemiology: a scope since 2005. Rev Med Microbiol. 2015; 26:20–25.
14. Saki J, Khademvatan S, Soltani S, Shahbazian H. Detection of toxoplasmosis in patients with end-stage renal disease by enzyme-linked immunosorbent assay and polymerase chain reaction methods. Parasitol Res. 2013; 112:163–168.
Article
15. Yousefi E, Foroutan M, Salehi R, Khademvatan S. Detection of acute and chronic toxoplasmosis amongst multi-transfused thalassemia patients in southwest of Iran. J Acute Dis. 2017; 6:120–125.
Article
16. Saki J, Shafieenia S, Foroutan-Rad M. Seroprevalence of toxoplasmosis in diabetic pregnant women in southwestern of Iran. J Parasit Dis. 2016; 40:1586–1589. PMID: 27876989.
Article
17. Foroutan-Rad M, Khademvatan S, Majidiani H, Aryamand S, Rahim F, Malehi AS. Seroprevalence of Toxoplasma gondii in the Iranian pregnant women: a systematic review and meta-analysis. Acta Trop. 2016; 158:160–169. PMID: 26952970.
18. Abdoli A, Dalimi A, Soltanghoraee H, Ghaffarifar F. Molecular detection and genotypic characterization of Toxoplasma gondii in paraffin-embedded fetoplacental tissues of women with recurrent spontaneous abortion. Int J Fertil Steril. 2017; 10:327–336. PMID: 28042412.
19. Fallahi S, Rostami A, Nourollahpour Shiadeh M, Behniafar H, Paktinat S. An updated literature review on maternal-fetal and reproductive disorders of Toxoplasma gondii infection. J Gynecol Obstet Hum Reprod. 2017; 12. 08. [Epub]. DOI: 10.1016/j.jogoh.2017.12.003.
Article
20. Centers for Disease Control and Prevention (CDC). Toxoplasmosis [Internet]. Atlanta, GA: Centers for Disease Control and Prevention (CDC);2017. cited 2018 Jan 6. Available from: https://www.cdc.gov/dpdx/toxoplasmosis/.
21. Sharif M, Sarvi S, Shokri A, et al. Toxoplasma gondii infection among sheep and goats in Iran: a systematic review and meta-analysis. Parasitol Res. 2015; 114:1–16. PMID: 25378258.
Article
22. Majidiani H, Dalvand S, Daryani A, Galvan-Ramirez ML, Foroutan-Rad M. Is chronic toxoplasmosis a risk factor for diabetes mellitus? A systematic review and meta-analysis of case-control studies. Braz J Infect Dis. 2016; 20:605–609. PMID: 27768900.
Article
23. Sutterland AL, Fond G, Kuin A, et al. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand. 2015; 132:161–179. PMID: 25877655.
24. Flegr J. Neurological and neuropsychiatric consequences of chronic Toxoplasma infection. Curr Clin Microbiol Rep. 2015; 2:163–172.
Article
25. Havlicek J, Gasova ZG, Smith AP, Zvara K, Flegr J. Decrease of psychomotor performance in subjects with latent ‘asymptomatic’ toxoplasmosis. Parasitology. 2001; 122(Pt 5):515–520. PMID: 11393824.
Article
26. Webster JP, Brunton CF, MacDonald DW. Effect of Toxoplasma gondii upon neophobic behaviour in wild brown rats, Rattus norvegicus. Parasitology. 1994; 109(Pt 1):37–43. PMID: 8058367.
Article
27. Antczak M, Dzitko K, Dlugonska H. Human toxoplasmosis-searching for novel chemotherapeutics. Biomed Pharmacother. 2016; 82:677–684. PMID: 27470411.
Article
28. Hiszczynska-Sawicka E, Gatkowska JM, Grzybowski MM, Dlugonska H. Veterinary vaccines against toxoplasmosis. Parasitology. 2014; 141:1365–1378. PMID: 24805159.
Article
29. Innes EA. Vaccination against Toxoplasma gondii: an increasing priority for collaborative research? Expert Rev Vaccines. 2010; 9:1117–1119. PMID: 20923261.
30. Kur J, Holec-Gasior L, Hiszczynska-Sawicka E. Current status of toxoplasmosis vaccine development. Expert Rev Vaccines. 2009; 8:791–808. PMID: 19485758.
Article
31. Garcia JL. Vaccination concepts against Toxoplasma gondii. Expert Rev Vaccines. 2009; 8:215–225. PMID: 19196201.
32. Lim SS, Othman RY. Recent advances in Toxoplasma gondii immunotherapeutics. Korean J Parasitol. 2014; 52:581–593. PMID: 25548409.
Article
33. Zhang NZ, Chen J, Wang M, Petersen E, Zhu XQ. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Rev Vaccines. 2013; 12:1287–1299. PMID: 24093877.
34. Ghaffarifar F. Strategies of DNA vaccines against toxoplasmosis. Rev Med Microbiol. 2015; 26:88–90.
Article
35. Hoseinian Khosroshahi K, Ghaffarifar F, D'Souza S, Sharifi Z, Dalimi A. Evaluation of the immune response induced by DNA vaccine cocktail expressing complete SAG1 and ROP2 genes against toxoplasmosis. Vaccine. 2011; 29:778–783. PMID: 21095254.
Article
36. Naserifar R, Ghaffarifar F, Dalimi A, Sharifi Z, Solhjoo K, Hosseinian Khosroshahi K. Evaluation of immunogenicity of cocktail DNA vaccine containing plasmids encoding complete GRA5, SAG1, and ROP2 antigens of Toxoplasma gondii in BALB/C mice. Iran J Parasitol. 2015; 10:590–598. PMID: 26811726.
37. Jongert E, Roberts CW, Gargano N, Forster-Waldl E, Petersen E. Vaccines against Toxoplasma gondii: challenges and opportunities. Mem Inst Oswaldo Cruz. 2009; 104:252–266.
Article
38. Buxton D. Toxoplasmosis: the first commercial vaccine. Parasitol Today. 1993; 9:335–337. PMID: 15463799.
Article
39. Dlugonska H. Toxoplasma rhoptries: unique secretory organelles and source of promising vaccine proteins for immunoprevention of toxoplasmosis. J Biomed Biotechnol. 2008; 2008:632424. PMID: 18670609.
40. Wang S, Hassan IA, Liu X, et al. Immunological changes induced by Toxoplasma gondii glutathione-S-transferase (TgGST) delivered as a DNA vaccine. Res Vet Sci. 2015; 99:157–164. PMID: 25648285.
Article
41. Hassan IA, Wang S, Xu L, Yan R, Song X, Li X. Immunoglobulin and cytokine changes induced following immunization with a DNA vaccine encoding Toxoplasma gondii selenium-dependent glutathione reductase protein. Exp Parasitol. 2014; 146:1–10. PMID: 25173485.
Article
42. Chu D, Moroda M, Piao LX, Aosai F. CTL induction by DNA vaccine with Toxoplasma gondii-HSP70 gene. Parasitol Int. 2014; 63:408–416. PMID: 24448159.
Article
43. Zhao G, Zhou A, Lu G, et al. Identification and characterization of Toxoplasma gondii aspartic protease 1 as a novel vaccine candidate against toxoplasmosis. Parasit Vectors. 2013; 6:175. PMID: 23768047.
Article
44. Gong P, Huang X, Yu Q, et al. The protective effect of a DNA vaccine encoding the Toxoplasma gondii cyclophilin gene in BALB/c mice. Parasite Immunol. 2013; 35:140–146. PMID: 23278173.
45. Chen J, Huang SY, Zhou DH, et al. DNA immunization with eukaryotic initiation factor-2alpha of Toxoplasma gondii induces protective immunity against acute and chronic toxoplasmosis in mice. Vaccine. 2013; 31:6225–6231. PMID: 24183979.
46. Chen J, Huang SY, Li ZY, et al. Protective immunity induced by a DNA vaccine expressing eIF4A of Toxoplasma gondii against acute toxoplasmosis in mice. Vaccine. 2013; 31:1734–1739. PMID: 23370151.
Article
47. Uboldi AD, McCoy JM, Blume M, et al. Regulation of starch stores by a Ca(2+)-dependent protein kinase is essential for viable cyst development in Toxoplasma gondii. Cell Host Microbe. 2015; 18:670–681. PMID: 26651943.
Article
48. Peixoto L, Chen F, Harb OS, et al. Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses. Cell Host Microbe. 2010; 8:208–218. PMID: 20709297.
Article
49. Billker O, Lourido S, Sibley LD. Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe. 2009; 5:612–622. PMID: 19527888.
Article
50. Nagamune K, Sibley LD. Comparative genomic and phylogenetic analyses of calcium ATPases and calcium-regulated proteins in the apicomplexa. Mol Biol Evol. 2006; 23:1613–1627. PMID: 16751258.
Article
51. Moreno SN, Docampo R. Calcium regulation in protozoan parasites. Curr Opin Microbiol. 2003; 6:359–364. PMID: 12941405.
Article
52. Zhang NZ, Huang SY, Zhou DH, et al. Protective immunity against Toxoplasma gondii induced by DNA immunization with the gene encoding a novel vaccine candidate: calcium-dependent protein kinase 3. BMC Infect Dis. 2013; 13:512. PMID: 24176018.
Article
53. Zhang NZ, Xu Y, Wang M, et al. Vaccination with Toxoplasma gondii calcium-dependent protein kinase 6 and rhoptry protein 18 encapsulated in poly(lactide-co-glycolide) microspheres induces long-term protective immunity in mice. BMC Infect Dis. 2016; 16:168. PMID: 27090890.
Article
54. Chen J, Li ZY, Petersen E, Liu WG, Zhu XQ. Co-administration of interleukins 7 and 15 with DNA vaccine improves protective immunity against Toxoplasma gondii. Exp Parasitol. 2016; 162:18–23. PMID: 26706605.
Article
55. Zhang NZ, Huang SY, Xu Y, et al. Evaluation of immune responses in mice after DNA immunization with putative Toxoplasma gondii calcium-dependent protein kinase 5. Clin Vaccine Immunol. 2014; 21:924–929. PMID: 24789795.
Article
56. Chen J, Li ZY, Huang SY, et al. Protective efficacy of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) adjuvated with recombinant IL-15 and IL-21 against experimental toxoplasmosis in mice. BMC Infect Dis. 2014; 14:487. PMID: 25192845.
Article
57. Morlon-Guyot J, Berry L, Chen CT, Gubbels MJ, Lebrun M, Daher W. The Toxoplasma gondii calcium-dependent protein kinase 7 is involved in early steps of parasite division and is crucial for parasite survival. Cell Microbiol. 2014; 16:95–114. PMID: 24011186.
58. Chen K, Wang JL, Huang SY, Yang WB, Zhu WN, Zhu XQ. Immune responses and protection after DNA vaccination against Toxoplasma gondii calcium-dependent protein kinase 2 (TgCDPK2). Parasite. 2017; 24:41. PMID: 29119944.
59. Billker O, Dechamps S, Tewari R, Wenig G, Franke-Fayard B, Brinkmann V. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell. 2004; 117:503–514. PMID: 15137943.
Article
60. Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature. 2010; 465:359–362. PMID: 20485436.
Article
61. Wang JL, Huang SY, Li TT, Chen K, Ning HR, Zhu XQ. Evaluation of the basic functions of six calcium-dependent protein kinases in Toxoplasma gondii using CRISPR-Cas9 system. Parasitol Res. 2016; 115:697–702. PMID: 26499803.
Article
62. Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines. 2016; 15:313–329. PMID: 26707950.
Article
63. Saade F, Petrovsky N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines. 2012; 11:189–209. PMID: 22309668.
Article
64. Doria-Rose NA, Haigwood NL. DNA vaccine strategies: candidates for immune modulation and immunization regimens. Methods. 2003; 31:207–216. PMID: 14511953.
Article
65. Ojo KK, Larson ET, Keyloun KR, et al. Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors. Nat Struct Mol Biol. 2010; 17:602–607. PMID: 20436472.
Article
66. Zhang NZ, Huang SY, Zhou DH, Xu Y, He JJ, Zhu XQ. Identification and bioinformatic analysis of a putative calcium-dependent protein kinase (CDPK6) from Toxoplasma gondii. Genet Mol Res. 2014; 13:10669–10677. PMID: 25526188.
Article
67. McCoy JM, Whitehead L, van Dooren GG, Tonkin CJ. TgCDPK3 regulates calcium-dependent egress of Toxoplasma gondii from host cells. PLoS Pathog. 2012; 8:e1003066. PMID: 23226109.
Article
68. Garrison E, Treeck M, Ehret E, et al. A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma. PLoS Pathog. 2012; 8:e1003049. PMID: 23209419.
Article
69. Sayles PC, Gibson GW, Johnson LL. B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii. Infect Immun. 2000; 68:1026–1033. PMID: 10678903.
70. Denkers EY, Gazzinelli RT. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev. 1998; 11:569–588. PMID: 9767056.
71. Suzuki Y, Orellana MA, Schreiber RD, Remington JS. Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science. 1988; 240:516–518. PMID: 3128869.
72. Dubensky TW Jr, Liu MA, Ulmer JB. Delivery systems for gene-based vaccines. Mol Med. 2000; 6:723–732. PMID: 11071268.
Article
73. Bureau MF, Naimi S, Torero Ibad R, et al. Intramuscular plasmid DNA electrotransfer: biodistribution and degradation. Biochim Biophys Acta. 2004; 1676:138–148. PMID: 14746908.
74. Greenland JR, Letvin NL. Chemical adjuvants for plasmid DNA vaccines. Vaccine. 2007; 25:3731–3741. PMID: 17350735.
Article
75. Montomoli E, Piccirella S, Khadang B, Mennitto E, Camerini R, De Rosa A. Current adjuvants and new perspectives in vaccine formulation. Expert Rev Vaccines. 2011; 10:1053–1061. PMID: 21806399.
Article
76. Khosroshahi KH, Ghaffarifar F, Sharifi Z, et al. Comparing the effect of IL-12 genetic adjuvant and alum non-genetic adjuvant on the efficiency of the cocktail DNA vaccine containing plasmids encoding SAG-1 and ROP-2 of Toxoplasma gondii. Parasitol Res. 2012; 111:403–411. PMID: 22350714.
Article
77. Xue M, He S, Zhang J, Cui Y, Yao Y, Wang H. Comparison of cholera toxin A2/B and murine interleukin-12 as adjuvants of Toxoplasma multi-antigenic SAG1-ROP2 DNA vaccine. Exp Parasitol. 2008; 119:352–357. PMID: 18442818.
Article
78. Liu Q, Wang F, Wang G, et al. Toxoplasma gondii: immune response and protective efficacy induced by ROP16/GRA7 multicomponent DNA vaccine with a genetic adjuvant B7-2. Hum Vaccin Immunother. 2014; 10:184–191. PMID: 24096573.
79. Wang PY, Yuan ZG, Petersen E, et al. Protective efficacy of a Toxoplasma gondii rhoptry protein 13 plasmid DNA vaccine in mice. Clin Vaccine Immunol. 2012; 19:1916–1920. PMID: 23015648.
Article
80. Dooms H, Abbas AK. Control of CD4+ T-cell memory by cytokines and costimulators. Immunol Rev. 2006; 211:23–38. PMID: 16824114.
81. Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest. 2005; 115:1177–1187. PMID: 15841203.
Article
82. Li ZY, Chen J, Petersen E, et al. Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice. Vaccine. 2014; 32:3058–3065. PMID: 24690150.
Article
83. Boothroyd JC, Dubremetz JF. Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol. 2008; 6:79–88. PMID: 18059289.
Article
84. Bradley PJ, Ward C, Cheng SJ, et al. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem. 2005; 280:34245–34258. PMID: 16002398.
Article
85. Liu Q, Li FC, Zhou CX, Zhu XQ. Research advances in interactions related to Toxoplasma gondii microneme proteins. Exp Parasitol. 2017; 176:89–98. PMID: 28286325.
Article
86. Brossier F, David Sibley L. Toxoplasma gondii: microneme protein MIC2. Int J Biochem Cell Biol. 2005; 37:2266–2272. PMID: 16084754.
Article
87. Shirota H, Klinman DM. Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Expert Rev Vaccines. 2014; 13:299–312. PMID: 24308579.
Article
88. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003; 90:261–280. PMID: 12880694.
Article
89. Jain S, O'Hagan DT, Singh M. The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines. 2011; 10:1731–1742. PMID: 22085176.
Article
90. Xu Y, Zhang NZ, Wang M, et al. A long-lasting protective immunity against chronic toxoplasmosis in mice induced by recombinant rhoptry proteins encapsulated in poly (lactide-co-glycolide) microparticles. Parasitol Res. 2015; 114:4195–4203. PMID: 26243574.
Article
91. Nabi H, Rashid I, Ahmad N, et al. Induction of specific humoral immune response in mice immunized with ROP18 nanospheres from Toxoplasma gondii. Parasitol Res. 2017; 116:359–370. PMID: 27785602.
Article
92. Chuang SC, Ko JC, Chen CP, Du JT, Yang CD. Encapsulation of chimeric protein rSAG1/2 into poly(lactide-co-glycolide) microparticles induces long-term protective immunity against Toxoplasma gondii in mice. Exp Parasitol. 2013; 134:430–437. PMID: 23624036.
Article
93. Flower DR, Macdonald IK, Ramakrishnan K, Davies MN, Doytchinova IA. Computer aided selection of candidate vaccine antigens. Immunome Res. 2010; 6(Suppl 2):S1.
Article
94. Romano P, Giugno R, Pulvirenti A. Tools and collaborative environments for bioinformatics research. Brief Bioinform. 2011; 12:549–561. PMID: 21984743.
Article
95. Wang Y, Wang G, Cai J, Yin H. Review on the identification and role of Toxoplasma gondii antigenic epitopes. Parasitol Res. 2016; 115:459–468. PMID: 26581372.
Article
96. Zhou J, Wang L, Lu G, et al. Epitope analysis and protection by a ROP19 DNA vaccine against Toxoplasma gondii. Parasite. 2016; 23:17. PMID: 27055564.
97. Cao A, Liu Y, Wang J, et al. Toxoplasma gondii: vaccination with a DNA vaccine encoding T- and B-cell epitopes of SAG1, GRA2, GRA7 and ROP16 elicits protection against acute toxoplasmosis in mice. Vaccine. 2015; 33:6757–6762. PMID: 26518401.
Article
98. Cong H, Gu QM, Yin HE, et al. Multi-epitope DNA vaccine linked to the A2/B subunit of cholera toxin protect mice against Toxoplasma gondii. Vaccine. 2008; 26:3913–3921. PMID: 18555564.
Article
99. Cong H, Yuan Q, Zhao Q, et al. Comparative efficacy of a multi-epitope DNA vaccine via intranasal, peroral, and intramuscular delivery against lethal Toxoplasma gondii infection in mice. Parasit Vectors. 2014; 7:145. PMID: 24685150.
Article
100. Yin H, Zhao L, Wang T, Zhou H, He S, Cong H. A Toxoplasma gondii vaccine encoding multistage antigens in conjunction with ubiquitin confers protective immunity to BALB/c mice against parasite infection. Parasit Vectors. 2015; 8:498. PMID: 26420606.
Article
101. Alexander J, Jebbari H, Bluethmann H, Satoskar A, Roberts CW. Immunological control of Toxoplasma gondii and appropriate vaccine design. Curr Top Microbiol Immunol. 1996; 219:183–195. PMID: 8791700.
Article
Full Text Links
  • CEVR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr