Nat Prod Sci.  2017 Jun;23(2):92-96. 10.20307/nps.2017.23.2.92.

Inhibitory Effect of a Sesquiterpene from Artemisia iwayomogi on Expression of Inducible Nitric Oxide Synthase by Suppression of I-κBα Degradation in LPS-stimulated RAW 264.7 Cells

Affiliations
  • 1College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea. ryuha@sookmyung.ac.kr
  • 2Department of Natural Medicine Resources, Semyung University, Jecheon, Chungbuk 27136, Republic of Korea. hwalee@semyung.ac.kr

Abstract

A sesquiterpene was purified from Artemisia iwayomogi methanolic extract during the course of searching anti-inflammatory principle from medicinal plants. A sesquiterpene identified as armefolin inhibited the production of nitric oxide (NO) and attenuated inducible nitric oxide synthase (iNOS) protein level in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Armefolin also down-regulated mRNA expressions of iNOS and pro-inflammatory cytokines, interleukin-1β and interleukin-6 in LPS-activated macrophages. Moreover, armefolin suppressed the degradation of inhibitory-κBα (I-κBα) in LPS-activated macrophages. These data suggest that armefolin from A. iwayomogi can suppress the LPS-induced production of NO and the expression of iNOS gene through inhibiting the degradation of I-κBα. Taken together, armefolin from A. iwayomogi might be a candidate as promising anti-inflammatory agent.

Keyword

Artemisia iwayomogi; Armefolin; Sesquiterpene; Nitric oxide; Inducible nitric oxide synthase

MeSH Terms

Artemisia*
Cytokines
Interleukin-6
Macrophages
Methanol
Nitric Oxide
Nitric Oxide Synthase Type II*
Plants, Medicinal
RAW 264.7 Cells*
RNA, Messenger
Cytokines
Interleukin-6
Methanol
Nitric Oxide
Nitric Oxide Synthase Type II
RNA, Messenger

Figure

  • Fig. 1. The structure of armefolin purified from A. iwayomogi (A) and the effect of armefolin on LPS-induced NO production in RAW 264.7 macrophages (B). The amount of nitrite in culture medium was measured by using Griess reagents (bar). Cell viability was determined by MTT assay (•). The values are expressed as the means ± S.D. of three individual experiments. ∗ p < 0.05 indicate significant differences from the LPS alone.

  • Fig. 2. Effects of armefolin on iNOS expression (A) and inflammatory cytokines (B) in LPS-activated RAW 264.7 macrophages. Cells were treated with armefolin for 20 h during LPS (1 μg/mL) activation. Cell lysates were prepared and the iNOS and β-actin protein levels were determined by Western blotting (A). Cells were treated with armefolin for 6 h during LPS (1 μg/ mL) activation. The mRNA levels for iNOS, IL-1β, IL-6 and β-actin were determined by RT-PCR from total RNA extracts (B). β-Actin was used as an internal control. Images are the representative of three independent experiments that shows similar results.

  • Fig. 3. The effects of armefolin on LPS-induced I-κBα degradation (A) and phosphorylation of p38, JNK and ERK (B) in RAW 264.7 macrophages. Cells were pre-treated with armefolin for 30 min prior to LPS treatment. Cell lysates were prepared after LPS treatment for an additional 15 min, and then levels of degraded I-κBα (A), phosphorylated p38, JNK and ERK (B) were determined by Western blot. Images are the representative of three independent experiments that shows similar results.


Reference

References

(1). Kim J. K.Illustrated Natural Drugs Encyclopedia; Namsandang publisher: Seoul,. 1989. , p. 79.
(2). Yan X. T.., Ding Y.., Lee S. H.., Li W.., Sun Y. N.., Yang S. Y.., Jang H. D.., Kim Y. H.Nat. Prod. Sci. 2014. 20:176–181.
(3). Ha H.., Lee H.., Seo C. S.., Lim H. S.., Lee M. Y.., Lee J. K.., Shin H.Evid. Based Complement. Alternat. Med. 2014. 2014:673286.
(4). Wang J. H.., Choi M. K.., Shin J. W.., Hwang S. Y.., Son C. G. J.Ethnopharmacol. 2012. 140:179–185.
(5). Yu H. H.., Kim Y. H.., Kil B. S.., Kim K. J.., Jeong S. I.., You Y. O.Planta Med. 2003. 69:1159–1162.
(6). Kim A. R.., Zou Y. N.., Park T. H.., Shim K. H.., Kim M. S.., Kim N. D.., Kim J. D.., Bae S. J.., Choi J. S.., Chung H. Y.Phytother. Res. 2004. 18:1–7.
(7). Ahn H.., Kim J. Y.., Lee H. J.., Kim Y. K.., Ryu J. H.Arch. Pharm. Res. 2003. 26:301–305.
(8). Nathan C.., Xie Q. W. J.Biol. Chem. 1994. 269:13725–13728.
(9). Thomsen L. L.., Miles D. W.Cancer Metastasis Rev. 1998. 17:107–118.
Article
(10). Weinberg J. B.., Fermor B.., Guilak F.Subcell. Biochem. 2007. 42:31–62.
(11). Mittal R.., Gonzalez-Gomez I.., Goth K. A.., Prasadarao N. V.Am. J. Pathol. 2010. 176:1292–1305.
(12). Kapur S.., Picard F.., Perreault M.., Deshaies Y.., Marette A.Int. J. Obes. Relat. Metab. Disord. 2000. 24:S36–S40.
(13). Förstermann U.., Schmidt H. H.., Pollock J. S.., Sheng H.., Mitchell J. A.., Warner T. D.., Nakane M.., Murad F.Biochem. Pharmacol. 1991. 42:1849–1857.
(14). Förstermann U.., Pollock J. S.., Tracey W. R.., Nakane M.Methods Enzymol. 1994. 233:258–264.
(15). Hiraku Y.., Kawanishi S.., Ichinose T.., Murata M. Ann. N. Y.Acad. Sci. 2010. 1203:15–22.
(16). Hiraku Y.., Kawanishi S.Methods Mol. Biol. 2009. 512:3–13.
(17). Mata R.., Delgado G.., de Vivar A. R.Phytochemistry. 1984. 23:1665–1668.
(18). Gasparini C.., Feldmann M.Curr. Pharm. Des. 2012. 18:5735–5745.
(19). Kanarek N.., Ben-Neriah Y.Immunol. Rev. 2012. 246:77–94.
(20). Valera F. C.., Umezawa K.., Brassesco M. S.., Castro-Gamero A. M.., Queiroz R. G. D. P.., Scrideli C. A.., Tone L. G.., Anselmo-Lima W. T.Cell. Physiol. Biochem. 2012. 30:13–22.
(21). Ganai A. A.., Khan A. A.., Malik Z. A.., Farooqi H.Toxicol. Appl. Pharmacol. 2015. 283:139–146.
(22). Kaminska B.Biochim. Biophys. Acta. 2005. 1754:253–262.
(23). Kim E. K.., Choi E. J.Arch. Toxicol. 2015. 89:867–882.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr